Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 4, pp 2159–2169 | Cite as

Investigations on the structural, mechanical, thermal, and electrical properties of Ce-doped TiO2/poly(n-butyl methacrylate) nanocomposites

  • K. Suhailath
  • M. T. RamesanEmail author


This study focused on the fabrication of poly(n-butyl methacrylate) (PBMA) nanocomposites with various concentrations of cerium-doped titanium dioxide (Ce–TiO2) nanoparticles via in situ polymerization technique. The structural characterization and the material properties of all the composites were analyzed by UV–visible, FTIR, XRD, SEM, DSC, TG, and tensile strength measurements. The UV–visible and FTIR studies confirmed the effective inclusion of Ce–TiO2 nanoparticles into the PBMA matrix. The change in amorphous morphology of PBMA to a crystalline structure was observed from the XRD pattern. The SEM morphology revealed the attachment of nanoparticles in the polymer matrix. The inclusion of Ce–TiO2 nanoparticles enhanced the glass transition temperature, and thermal stability of the PBMA matrix was revealed from DSC and TG, respectively. The tensile strength of PBMA was greatly enhanced by the addition of Ce–TiO2 nanoparticles. The AC conductivity, dielectric constant, and dielectric loss studies were also performed in the frequency range 102–106 Hz, and it was observed that addition of Ce–TiO2 nanoparticles greatly enhanced the electrical properties of PBMA. The change in dielectric constant with the addition of nanoparticles was correlated with a theoretical modeling study. This work also extended to study the role of Ce–TiO2 nanoparticles in the reinforcing mechanism of the nanocomposite by comparing the actual tensile strength of the composite with different theoretical modeling. The high dielectric constant and tensile strength of composite are beneficial in designing lightweight and highly efficient nanoelectronic materials based on the family of polybutyl acrylates.


Poly(n-butyl methacrylate) Ce–TiO2 nanoparticles Characterizations Thermal properties AC conductivity Dielectric properties Tensile strength Modeling 


Compliance with ethical standards

Conflict of interest

The authors of this article have no conflict of interest to declare.


  1. 1.
    Mallakpour S, Dinari M. The effects of reactive organoclay on the thermal, mechanical, and microstructural properties of polymer/layered silicate nanocomposites based on chiral poly (amide-imide). J Therm Anal Calorim. 2013;114:329–37.CrossRefGoogle Scholar
  2. 2.
    Kotsilkova R, Petkova V, Pelovski Y. Thermal analysis of polymer-silicate nanocomposites. J Therm Anal Calorim. 2001;64:591–8.CrossRefGoogle Scholar
  3. 3.
    Ramesan MT, Nidhisha V, Jayakrishnan P. Synthesis, characterization and conducting properties of novel poly (vinyl cinnamate)/zinc oxide nanocomposites via in situ polymerization. Mater Sci Semicond Process. 2017;63:253–60.CrossRefGoogle Scholar
  4. 4.
    Jundale DM, Navale ST, Khuspe GD, Dalavi DS, Patil PS, Patil VB. Polyaniline–CuO hybrid nanocomposites: synthesis, structural, morphological, optical and electrical transport studies. J Mater Sci: Mater Electron. 2013;24:3526–35.Google Scholar
  5. 5.
    Sampreeth T, Al-Maghrabi MA, Bahuleyan B, Ramesan MT. Synthesis, characterization, thermal properties, conductivity and sensor application study of polyaniline/cerium-doped titanium dioxide nanocomposites. J Mater Sci. 2018;53:591–603.CrossRefGoogle Scholar
  6. 6.
    Kmita AR, Gajek M, Dudek M, Zych ES, Szaraniec B, Lach R. Thermal, structural and mechanical analysis of polymer/clay nanocomposites with controlled degradation. J Therm Anal Calorim. 2017;127:389–98.CrossRefGoogle Scholar
  7. 7.
    Ramesan MT, Santhi V. In situ synthesis, characterization, conductivity studies of polypyrrole/silver doped zinc oxide nanocomposites and their application for ammonia gas sensing. J Mater Sci: Mater Electron. 2017;28:18804–14.Google Scholar
  8. 8.
    Yan J, Wang C, Gao Y, Zheng Z, Cheng Z, Cui X, Wang H. Experimental investigation on the role of PVA in eliminating inhibition phenomenon of carbon black during the synthesis of polystyrene/carbon black composite particles. Polym Eng Sci. 2012;52:1309–16.CrossRefGoogle Scholar
  9. 9.
    Chatterjee A. Properties improvement of PMMA using nano TiO2. J Appl Polym Sci. 2010;118:2890–7.CrossRefGoogle Scholar
  10. 10.
    Assmann SE, Widoniak J, Maret G. Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles. Chem Mater. 2004;16:6–11.CrossRefGoogle Scholar
  11. 11.
    Khairy M, Amin NH, Kamal R. Optical and kinetics of thermal decomposition of PMMA/ZnO nanocomposites. J Therm Anal Calorim. 2017;128:1811–24.CrossRefGoogle Scholar
  12. 12.
    Nihmath A, Ramesan MT. Fabrication, characterization and dielectric studies of NBR/hydroxyapatite nanocomposites. J Inorg Organomet Polym. 2017;27:481–9.CrossRefGoogle Scholar
  13. 13.
    Bakir M, Meyer JL, Economy J, Jasiuk I. Aromatic thermosetting copolyester nanocomposite foams: high thermal and mechanical performance lightweight structural materials. Polymer. 2017;123:311–20.CrossRefGoogle Scholar
  14. 14.
    Ou Y, Yang F, Yu Z. A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. J Polym Sci, Part B: Polym Phys. 1998;36:789–95.CrossRefGoogle Scholar
  15. 15.
    Suhailath K, Ramesan MT, Naufal B, Periyat P, Jasna VC, Jayakrishnan P. Synthesis, characterisation and flame, thermal and electrical properties of poly (n-butyl methacrylate)/titanium dioxide nanocomposites. Polym Bull. 2016;74:671–88.CrossRefGoogle Scholar
  16. 16.
    Suhailath K, Jayakrishnan P, Naufal B, Periyat P, Jasna VC, Ramesan MT. Synthesis by in situ-free radical polymerization, characterization, and properties of poly (n-butyl methacrylate)/samarium-doped titanium dioxide nanoparticles composites. Adv Polym Technol. 2016. Scholar
  17. 17.
    Ramesan MT, Sampreeth T. In situ synthesis of polyaniline/Sm-doped TiO2 nanocomposites: evaluation of structural, morphological, conductivity studies and gas sensing applications. J Mater Sci: Mater Electron. 2017;28:16181–91.Google Scholar
  18. 18.
    Rahman OU, Ahmad S. Soy polyester urethane/TiO2 and Ce–TiO2 nanocomposites: preparation, characterization and evaluation of electrochemical corrosion resistance performance. RSC Adv. 2016;6:10584–96.CrossRefGoogle Scholar
  19. 19.
    Shendea TP, Bhanvasea BA, Rathodb AP, Pinjaric DV, Sonawane SH. Sonochemical synthesis of Graphene-Ce–TiO2 and Graphene-Fe-TiO2 ternary hybrid photocatalyst nanocomposite and its application in degradation of crystal violet dye. Ultrason Sonochem. 2018;41:582–9.CrossRefGoogle Scholar
  20. 20.
    Shaari N, Tan SH, Mohamed AR. Synthesis and characterization of CNT/Ce–TiO2 nanocomposite for phenol degradation. J Rare Earth. 2012;30:651–8.CrossRefGoogle Scholar
  21. 21.
    Sun P, Liu L, Cui SC, Liu JG. Synthesis, characterization of Ce–doped TiO2 nanotubes with high visible light photocatalytic activity. Catal Lett. 2014;144:2107–13.CrossRefGoogle Scholar
  22. 22.
    Maddila S, Oseghe EO, Jonnalagadda SB. Photocatalyzed ozonation by Ce doped TiO2 catalyst degradation of pesticide Dicamba in water. J Chem Technol Biotechnol. 2016;91:385–93.CrossRefGoogle Scholar
  23. 23.
    Sugumaran S, Bellan CS. Transparent nano composite PVA–TiO2 and PMMA–TiO2 thin films: Optical and dielectric properties. Opt Int J Light Electron Opt. 2014;125:5128–33.CrossRefGoogle Scholar
  24. 24.
    Yuvaraj H, Kim WS, Kim JT, Kang IP, Gal YS, Kim SW, Lim KT. Synthesis of poly(methyl methacrylate) encapsulated TiO2 nanocomposite particles in supercritical CO2. Mol Cryst Liq Cryst. 2009;514:355–65.Google Scholar
  25. 25.
    Yuwono AH, Xue J, Wang J, Elim HI, Ji W, Li Y, White T. Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior. J Mater Chem. 2003;13:1475–9.CrossRefGoogle Scholar
  26. 26.
    Ndinda E, Park H, Kim KN. Preparation and characterization of cerium doped titanium dioxide nano powder for photocatalyst. Korean J Mater Res. 2014;24:33–6.CrossRefGoogle Scholar
  27. 27.
    Gaur MS, Singh PK, Indolia AP, Yadav PK, Rogachev AA, Rogachev AV. Improvement of dielectric properties of spin coated PMMA-ZnO nano hybrid thin film. Ferroelectrics. 2017;510:56–70.CrossRefGoogle Scholar
  28. 28.
    Marinovic M, Vukovic J, Jeremic K, Nedeljkovic JM. Thermal properties of PMMA/TiO2 nanocomposites prepared by in situ bulk polymerization. Polym Compos. 2009;30:737–42.CrossRefGoogle Scholar
  29. 29.
    Laachachi A, Ferriol M, Cochez M, Ruch D, Cuesta JML. The catalytic role of oxide in the thermooxidative degradation of poly(methyl methacrylate)–TiO2 nanocomposites. Polym Degrad Stab. 2008;93:1131–7.CrossRefGoogle Scholar
  30. 30.
    Takashi O, Yutaka K, Made J, Toru I, Kikuo O. Beads mill-assisted symthesis of polymethyl methacrylate (PMMA)-TiO2 nnaoparticle composites. Ind Eng Chem. 2008;47:2597–604.CrossRefGoogle Scholar
  31. 31.
    Ramesan MT, Jose C, Jayakrishnan P, Anilkumar T. Multifunctional ternary composites of poly (vinyl alcohol)/cashew tree gum/pumice particles. Polym Compos. 2018;39:38–45.CrossRefGoogle Scholar
  32. 32.
    Jasna VC, Ramesan MT. Studies on the mechanical, electrical properties and interaction of petroleum fuels with SBR/manganous tungstate nanocomposites. J Inorg Organomet Polym. 2017;27:968–78.CrossRefGoogle Scholar
  33. 33.
    Goerge S, Varughese KT, Thomas S. Dielectric properties of isotactic polypropylene/nitrile rubber blends: effects of blend ratio, filler addition and dynamic vulcanization. J Appl Polym Sci. 1999;73:255–70.CrossRefGoogle Scholar
  34. 34.
    Reynolds JA, Hough JM. Formulae for dielectric constant of mixtures. Proc Phys Soc Lond B. 1957;70:769–75.CrossRefGoogle Scholar
  35. 35.
    Debnath S, De PP, Khastgir D. Ambient electrical properties of mica-styrene-butadiene rubber composites. Rubber Chem Technol. 1987;61:555–67.CrossRefGoogle Scholar
  36. 36.
    Ramesan MT, Jayakrishnan P, Sampreeth T, Pradyumnan PP. Temperature dependent AC electrical conductivity, thermal stability and different DC conductivity modelling of novel poly (vinyl cinnamate)/zinc oxide nanocomposites. J Therm Anal Calorim. 2017;129:135–45.CrossRefGoogle Scholar
  37. 37.
    Lazzeri A, Phuong VT. Dependence of the Pukánszky’s interaction parameter B on the interface shear strength (IFSS) of nanofiller- and short fiber-reinforced polymer composites. Compos Sci Technol. 2014;93:106–13.CrossRefGoogle Scholar
  38. 38.
    Zare SY. A model for tensile strength of polymer/clay nanocomposites assuming complete and incomplete interfacial adhesion between the polymer matrix and nanoparticles by the average normal stress in clay platelets. RSC Adv. 2016;6:57969–76.CrossRefGoogle Scholar
  39. 39.
    Zare Y, Rhee KY, Park S. Modeling of tensile strength in polymer particulate nanocomposites based on material and interphase properties. J Appl Polym Sci. 2017;134:44869–75.CrossRefGoogle Scholar
  40. 40.
    Pukanszky B. Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites. 1990;21:255–62.CrossRefGoogle Scholar
  41. 41.
    Milner JL, Bunget C, Farha FA, Kurfees T, Hammond VH. Modeling tensile strength of materials processed by accumulative roll bonding. J Manuf Process. 2013;15:219–26.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CalicutMalappuramIndia

Personalised recommendations