Advertisement

Research on the thermal decomposition kinetics and the isothermal stability of HMX

  • Kai Wang
  • Junlin Wang
  • Tianji Guo
  • Wei Wang
  • Dabin Liu
Article
  • 30 Downloads

Abstract

During the thermal decomposition of cyclotetramethylene tetramine (HMX), the endothermic process of melt disturbed exothermic decomposition, which brought deformation in its thermal graphs. Hence, exact kinetic parameters of the thermal decomposition of HMX could not be calculated by the thermal measuring method. The thermal stability in low temperature also couldn’t be described by the decomposition kinetics of the temperatures higher than the temperature of melt. Thermogravimetric (TG) measures the sample’s mass loss in the process of the thermal decomposition which will reduce the impact of the melting process to a certain extent. In this study, the combined TG (thermogravimetric analyzer)/DSC (differential scanning calorimetry) method was used to investigate the thermal behavior of HMX. Based on the experimental data of TG, the kinetic model and parameters of the thermal decomposition of HMX was studied by the multivariate nonlinear regression method. The isothermal DSC test has certain advantages for studying the thermal behavior of materials at low temperature. In this paper, the isothermal DSC test was used to investigate the thermal behavior of HMX. The kinetic parameters obtained by the Friedman method with heat balance were analyzed and used for simulating the adiabatic behavior time to the maximum rate under adiabatic conditions (TMRad). The results indicated that the decomposition process of HMX could be described by the kinetic equation: \({\text{d}}\alpha /{\text{d}}t = 10^{38.2} \exp ( - \,432200/RT)(1 - \alpha )(1 + 10^{1.41} \alpha )\), which was autocatalytic decomposition. The TD8 and TD24 (the temperatures when the adiabatic behavior time to the maximum rate under adiabatic conditions were 8 and 24 h, respectively) of HMX were 214.6 and 204.5 °C, respectively.

Keywords

Thermal decomposition Multivariate nonlinear regression Thermal stability Cyclotetramethylene tetramine Energetic material Autocatalytic 

References

  1. 1.
    Long GT, Brems BA, Wight CA. Autocatalytic thermal decomposition kinetics of TNT. Thermochim Acta. 2002;388(1):175–81.CrossRefGoogle Scholar
  2. 2.
    Batten JJ. The agent of autocatalytic thermal decomposition of aliphatic nitrate ester explosives. Int J Chem Kinet. 1985;17(10):1085–90.CrossRefGoogle Scholar
  3. 3.
    Lee JS, Hsu CK, Chang CL. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX. Thermochim Acta. 2002;392–393:173–6.CrossRefGoogle Scholar
  4. 4.
    Huang CC, Wu TS. Obtaining kinetic data of energetic material decomposition by differential thermal analysis. Thermochim Acta. 1992;204:239–50.CrossRefGoogle Scholar
  5. 5.
    Hu RZ, Guo PJ, Song JR. Estimation of the critical increase temperature rate of thermal explosion of nitrocellulose using non-isothermal DSC. Chin J Explos Propellants. 2003;26(2):53–7.Google Scholar
  6. 6.
    Sinapour H, Damiri S, Pouretedal HR. The study of RDX impurity and wax effects on the thermal decomposition kinetics of HMX explosive using DSC/TG and accelerated aging methods. J Therm Anal Calorim. 2017;129(1):271–9.CrossRefGoogle Scholar
  7. 7.
    Dong HF, Zan WT, Hong T. Numerical simulation of deflagration to detonation transition in granular HMX explosives under thermal ignition. J Therm Anal Calorim. 2017;127(1):975–81.CrossRefGoogle Scholar
  8. 8.
    Mccoy BJ. Distribution kinetics for temperature-programmed pyrolysis. Ind Eng Chem Res. 1999;38(12):4531–7.CrossRefGoogle Scholar
  9. 9.
    Wang ZX, Guo XD, Yan T. Preparation of HMX/TATB composite particles using a mechanochemical approach. Propellants, Explos, Pyrotech. 2016;41(2):327–33.CrossRefGoogle Scholar
  10. 10.
    Zhan T, Li Y, Qiao XJ. On thermal decomposition kinetics and thermal safety of HMX. Chin J Energetic Mater. 2011;19(4):396–400.Google Scholar
  11. 11.
    Wang Y, Jiang W, Li FS. Insensitive HMX nanocrystals fabricated by high-yield low-cost mechanical milling. Cent Eur J Energetic Mater. 2013;10(2):277–87.Google Scholar
  12. 12.
    Zhang CX, Lu GB, Chen LP. Two decoupling methods for non-isothermal DSC results of AIBN decomposition. J Hazard Mater. 2015;285:61–8.CrossRefGoogle Scholar
  13. 13.
    Wang QS, Rogers WJ, Mannan MS. Thermal risk assessment and ranking for reaction hazards in process safety. J Therm Anal Calorim. 2009;98(1):225–9.CrossRefGoogle Scholar
  14. 14.
    Roduit B, Dermaut W, Lunghi A. Advanced kinetics-based simulation of time to maximum rate under adiabatic conditions. J Therm Anal Calorim. 2008;93(1):163–73.CrossRefGoogle Scholar
  15. 15.
    Roduit B, Bogeat C, Berger B. Advanced kinetic tools for the evaluation of decomposition reactions. J Therm Anal Calorim. 2005;80(1):229–36.CrossRefGoogle Scholar
  16. 16.
    Keller A, Stark D, Fierz H. Estimation of the time to maximum rate using dynamic DSC experiments. J Loss Prev Process Ind. 1997;10(1):31–41.CrossRefGoogle Scholar
  17. 17.
    Hu YT, Lv ZS, Sun Y. Preparation of HMX by Nitrosis of N2O5/HNO3/organic solvent mixed systems. Chin J Explos Propellants. 2016;39(2):50–3.Google Scholar
  18. 18.
    Vyazovkin S, Burnham AK, Criado JM. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–19.CrossRefGoogle Scholar
  19. 19.
    Wang Y, Jiang W, Song XL. Insensitive HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraocine) nanocrystals fabricated by high-yield, low-cost mechanical milling. Cent Eur J Energetic Mater. 2013;10(2):277–87.Google Scholar
  20. 20.
    Bou-Diab L, Fierz H. Autocatalytic decomposition reactions, hazards and detection. J Hazard Mater. 2002;93(1):137–46.CrossRefGoogle Scholar
  21. 21.
    Rouduit B, Hartmanna M, Follyb P. Parameters influencing the correct thermal safety evaluations of autocatalytic reactions. Chem Eng Trans. 2013;31:901–912.Google Scholar
  22. 22.
    Stoessel F. Thermal safety of chemical process: risk assessment and process design. Beijing: Science Press; 2009.Google Scholar
  23. 23.
    Zang N, Qian XM, Liao JY. Thermal stability of lauroyl peroxide by isoconversional kinetics evaluation and finite element analysis. J Taiwan Inst Chem Eng. 2014;45(2):461–7.CrossRefGoogle Scholar
  24. 24.
    Li XR, Koseki H. SADT prediction of autocatalytic material using isothermal calorimetry analysis. Thermochim Acta. 2005;431(1–2):113–6.CrossRefGoogle Scholar
  25. 25.
    Malow M, Wehrstedt KD. Prediction of the self-accelerating decomposition temperature (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements. J Hazard Mater. 2005;120(1–3):21–4.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Beijing Institute of Space Long March VehicleBeijingChina
  2. 2.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations