Advertisement

Advances in thermoanalytical techniques

May aspirin interfere with ß-thalassemia diagnosis?
  • Roberta Risoluti
  • Giuseppina Gullifa
  • Maria Aurora Fabiano
  • Francesco Sorrentino
  • Patrizia Caprari
  • Stefano Materazzi
Article
  • 26 Downloads

Abstract

Thermogravimetry coupled with chemometrics has proved to be a rapid and cost-effective diagnostic tool for β-thalassemia screening. This model, consisting of Partial Least Square-Discriminant Analysis (PLS-DA), permitted the discrimination of thalassemic patients and healthy individuals, using thermogravimetric curves of blood samples. In this study, the impact of aspirin on the capability of the TGA/chemometric validated model to screen for thalassemia was investigated. Whole blood samples from patients with congenital defects and healthy individuals were analyzed by the TGA7 thermobalance (Perkin Elmer) without any pretreament, and the resulting curves were compared to those typical of patients after aspirin intake. The chemometric approach allowed a quick identification of the anemia and confirms that the proposed model was not affected by aspirin. Results permit to consider the coupling TGA/chemometrics as a promising diagnostic approach to provide a high-throughput and sensitive tool to obtain an early detection of thalassemia.

Keywords

Thalassemia Screening Aspirin Thermogravimetric analysis Chemometrics 

Notes

Acknowledgements

The authors sincerely thank the patients and their families for their willingness to contribute to this research.

References

  1. 1.
    Weatherall DJ, Clegg JB. The thalassemia syndromes. Oxford: Blackwell Science; 2001.CrossRefGoogle Scholar
  2. 2.
    Cao A, Galanello R. Beta-thalassemia. Gen Med. 2010;12:61–76.Google Scholar
  3. 3.
    Thein SL. The molecular basis of β-Thalassemia, Wheatherall D, Schechter AN, Nathan DG, editors. Cold Spring Harb Perspect Med. 2013;3:011700.CrossRefGoogle Scholar
  4. 4.
    Giardine B, Borg J, Viennas E, Pavlidic C, Moradkhani K, Joly P, Bartsakoulia M, Riemer C, Miller W, Tzimas G, Wajcman H, Hardison RC, Patrinos GP. Updates of the HbVar database of human hemoglobinvariants and thalassemia mutations. Nucleic Acids Res. 2014;42:1063–9.CrossRefGoogle Scholar
  5. 5.
    Ruf A, Pick M, Deutsch V, Patscheke H, Goldfarb A, Rachmilewitz EA, Guillin MC, Eldor A. In-vivo platelet activation correlates with red cell anionic phospholipid exposure in patients with beta-thalassaemia major. Br J Haematol. 1997;98:51–6.CrossRefGoogle Scholar
  6. 6.
    Eldor A, Krausz Y, Atlan H, Snyder D, Goldfarb A, Hy-Am E, Rachmilewitz EA, Kotze HF, Du P, Heyns A. Platelet survival in patients with beta-thalassemia. Am J Hematol. 1989;32:94–9.CrossRefGoogle Scholar
  7. 7.
    Ataga KI, Cappellini MD, Rachmilewitz EA. Beta-thalassaemia and sickle cell anaemia as paradigms of hypercoagulability. Br J Haematol. 2007;139(1):3–13.CrossRefGoogle Scholar
  8. 8.
    Cappellini MD, Motta I, Musallam KM, Taher AT. Redefining thalassemia as a hypercoagulable state. Ann N Y Acad Sci. 2010;1202:231–6.CrossRefGoogle Scholar
  9. 9.
    Sirachainan N. Thalassemia and the hypercoagulable state. Thromb Res. 2013;132:637–41.CrossRefGoogle Scholar
  10. 10.
    Michaeli J, Mittelman M, Grisaru D, Rachmilewitz EA. Thromboembolic complications in beta thalassemia major. Acta Haematol. 1992;87:71–4.CrossRefGoogle Scholar
  11. 11.
    Akar N, Kemahli S, Uysal Z, Cin S. Thromboembolism in beta-thalassemia major. Acta Haematol. 1998;100:166.CrossRefGoogle Scholar
  12. 12.
    Cappellini MD, Robbiolo L, Bottasso BM, Coppola R, Fiorelli AP, Mannucci AP. Venous thromboembolism and hypercoagulability in splenectomized patients with thalassaemia intermedia. Br J Haematol. 2000;111:467–73.CrossRefGoogle Scholar
  13. 13.
    Taher A, Isma’eel H, Mehio G, Bignamini D, Kattamis A, Rachmilewitz EA, et al. Prevalence of thromboembolic events among 8,860 patients with thalassaemia major and intermedia in the Mediterranean area and Iran. Thromb Haemost. 2006;96:488–91.CrossRefGoogle Scholar
  14. 14.
    Sirachainan N, Wijarn P, Chuansumrit A, Kadegasem P, Wongwerawattanakoon P, Soisamrong A. Aspirin resistance in children and youg adults with splenectomized thalassemia disease. Thromb Res. 2015;135:916–22.CrossRefGoogle Scholar
  15. 15.
    Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, Hennekens C, Kearney P, Meade T, Patrono C, Roncaglioni MC, Zanchetti A. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373:1849–60.CrossRefGoogle Scholar
  16. 16.
    Eikelboom JW, Hirsh J, Spencer FA, Baglin TP, Weitz JI. Antiplatelet drugs: antithrombotic therapy and prevention of thrombosis. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines, vol. 141. Chest, 9th edn.; 2012. p. e89S–119S.Google Scholar
  17. 17.
    Patrono C, Garcia Rodriguez LA, Landolfi R, Baigent C. Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med. 2005;353:2373–83.CrossRefGoogle Scholar
  18. 18.
    Suwalsky M, Belmar J, Villena F, Gallardo MJ, Jemiola-Rzeminska M, Strzalka K. Acetylsalicylic acid (aspirin) and salicylic acid interaction with the human erythrocyte membrane bilayer induce in vitro changes in the morphology of erythrocytes. Arch Biochem Biophys. 2013;539:9–19.CrossRefGoogle Scholar
  19. 19.
    Elblbesy MA, Hereba ARM, Ahawki MM. Effects of aspirin on rheological properties of erythrocytes in vitro. Int J Biomed Sci. 2012;8:188–93.Google Scholar
  20. 20.
    Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115:4331–6.CrossRefGoogle Scholar
  21. 21.
    Barattucci A, Bonaccorsi P, Di Gioia ML, Leggio A, Minuti L, Romio E, Temperini A. Synthesis of d-erythro-sphinganine through serine-derived α-amino epoxides. J Org Chem. 2014;79:5320–6.CrossRefGoogle Scholar
  22. 22.
    Di Gioia ML, Leggio A, Le Pera A, Liguori A, Napoli A. SPE-GC-MS analysis of chloroform in drinking water. Chromatographia. 2004;60:319–22.CrossRefGoogle Scholar
  23. 23.
    Abi Saad M, Haddad AG, Alam ES, Aoun S, Maatouk P, Ajami N, Khairallah T, Koussa S, Musallam KM, Taher AT. Preventing thalassemia in Lebanon: successes and challenges in a developing country. Hemoglobin. 2014;38:308–11.CrossRefGoogle Scholar
  24. 24.
    Bach QV, Chen WH. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review. Bioresour Technol. 2017;246:88–100.CrossRefGoogle Scholar
  25. 25.
    Materazzi S, De Angelis Curtis S, Vecchio Ciprioti S, Risoluti R, Finamore J. Thermogravimetric characterization of dark chocolate. J Therm Anal Calorim. 2014;116:93–8.CrossRefGoogle Scholar
  26. 26.
    Materazzi S, Risoluti R, Napoli A. EGA-MS study to characterize the thermally induced decomposition of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,1-diaminobutane-Schiff base. Thermochim Acta. 2015;606:90–4.CrossRefGoogle Scholar
  27. 27.
    Papadopoulos C, Cristóvão B, Ferenc W, Hatzidimitriou A, Vecchio Ciprioti S, Risoluti R, Lalia-Kantouri M. Thermoanalytical, magnetic and structural investigation of neutral Co(II) complexes with 2,2′-dipyridylamine and salicylaldehydes. J Therm Anal Calorim. 2016;123:717–29.CrossRefGoogle Scholar
  28. 28.
    Marcilla A, Gómez-Siurana A, Beltrán M, Martínez-Castellanos I, Blasco I, Berenguer D. TGA/FTIR study of the behavior of sodium and potassium citrates in the decomposition of 3R4F tobacco N2 and air atmospheres. Thermochim Acta. 2017;657:31–8.CrossRefGoogle Scholar
  29. 29.
    Skreiberg A, Skreiberg Ø, Sandquist J, Sørum L. GA and macro-TGA characterization of biomass fuels and fuel mixtures. Fuel. 2011;90:2182–97.CrossRefGoogle Scholar
  30. 30.
    Risoluti R, Materazzi S, Sorrentino F, Maffei L, Caprari P. Thermogravimetric analysis coupled with chemometrics as a powerful predictive tool for ß-thalassemia screening. Talanta. 2016;159:425–32.CrossRefGoogle Scholar
  31. 31.
    Risoluti R, Piazzese D, Napoli A, Materazzi S. Study of [2-(2′-pyridyl)imidazole] complexes to confirm two main characteristic thermoanalytical behaviors of transition metal complexes based on imidazole derivatives. J Anal Appl Pyrolysis. 2016;117:82–7.CrossRefGoogle Scholar
  32. 32.
    Materazzi S, Finamore J, Risoluti R, Napoli A, D’Arienzo S. Characterization of thermally induced mechanisms by mass spectrometry-evolved gas analysis (EGA-MS): a study of divalent cobalt and zinc biomimetic complexes with N-heterocyclic dicarboxylic ligands. Int J Mass Spectrom. 2014;365–366:372–6.CrossRefGoogle Scholar
  33. 33.
    Materazzi S, Foti C, Crea F, Risoluti R, Finamore J. Biomimetic complexes of divalent cobalt and zinc with N-heterocyclic dicarboxylic ligands. Thermochim Acta. 2014;580:7–12.CrossRefGoogle Scholar
  34. 34.
    Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PL, Smeyers-Verbeke J. In: Vandeginste BGM, Rutan SC, editors. Handbook of chemometrics and qualimetrics, vol. Part B, 20B. Amsterdam: Elsevier; 1998. p. 88–103.Google Scholar
  35. 35.
    Materazzi S, Gregori A, Ripani L, Apriceno A, Risoluti R. Cocaine profiling: implementation of a predictive model by ATR-FTIR coupled with chemometrics in forensic chemistry. Talanta. 2017;166:328–35.CrossRefGoogle Scholar
  36. 36.
    Risoluti R, Materazzi S, Sorrentino F, Bozzi C, Caprari P. Update on thalassemia diagnosis: new insights and methods. Talanta. 2018;183:216–22.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Roberta Risoluti
    • 1
  • Giuseppina Gullifa
    • 1
  • Maria Aurora Fabiano
    • 1
  • Francesco Sorrentino
    • 3
  • Patrizia Caprari
    • 2
  • Stefano Materazzi
    • 1
  1. 1.Department of ChemistrySapienza - University of RomeRomeItaly
  2. 2.National Centre for the Control and Evaluation of MedicinesIstituto Superiore di SanitàRomeItaly
  3. 3.Thalassemia UnitS. Eugenio HospitalRomeItaly

Personalised recommendations