Effect of Arrhenius energy factor on molecular interactions of binary liquid mixtures

  • P. Vasundhara
  • M. Raveendra
  • C. Narasimharao
  • N. Venugopal Reddy
  • Kasibhatta S. Kumar
  • P. Venkateswarlu


Density (ρ) and speed of sound (u) data have been measured at temperatures 298.15 and 318.15 K and at atmospheric pressure for binary mixtures of aniline with toluene and isomeric chlorotoluenes namely o-chlorotoluene (oct), m-chlorotoluene (mct), p-chlorotoluene (pct) over the entire composition range. Experimental density and speed of sound data (u) have been used to calculate the excess volumes (VE), isentropic compressibilities (κs), excess isentropic compressibilities (κ s E ), excess intermolecular free length (L f E ), deviation in sound speed (Δu), and excess acoustic impedance (ZE) were computed for all mixtures. The results have been used to explore molecular interactions and structural effects which are prevailing between component molecules. The experimental speed of sound data was analyzed in terms of Schaaff’s collision factor theory and Jacobson’s free length theory to test their relative predicting ability in terms of pure component liquids. Also, apparent molar volume (\(\overline{V}_{{\varphi ,{\text{i}}}}^{{}}\)) and partial molar volume (\(\overline{V}_{\text{i}}^{{}}\)), excess partial molar volume, (\(\overline{V}_{\rm i}^{\rm E}\)) and their limiting values at infinite dilution,\(\overline{V}_{\rm{\varphi ,i}}^{ \circ }\), \(\overline{V}_{\rm i}^{ \circ }\) and \(\overline{V}_{\rm m,i}^{\rm{E,\infty }}\), and partial isentropic compressibility (\(\overline{\kappa }_{\rm i}^{{}}\)), excess partial isentropic compressibility (\(\overline{\kappa }_{\rm i}^{\rm E}\)) and their limiting values at infinite dilution,\(\overline{\kappa }_{\varphi , {\rm i}}^{ \circ }\), \(\overline{\kappa }_{\rm i}^{ \circ }\) and \(\overline{\kappa }_{\rm m,{\rm i}}^{E,\infty }\), respectively, have been calculated from the experimental density measurements. The variation of thermal properties with composition and temperature of the mixtures was analyzed in terms of molecular interactions.

Graphical Abstract


Density Speed of sound Binary mixtures Molecular interactions Excess properties 


  1. 1.
    Rowlinson JS, Swinton FL. Liquids and liquid mixtures. London: Bulterworths; 1982.Google Scholar
  2. 2.
    Canosa JM, Rodriguez A, Iglesias M, Orge B, Tojo J. Thermodynamic properties of alkenediols + acetates at 298.15 K. J Therm Anal Calorim. 1998;52:915–32.CrossRefGoogle Scholar
  3. 3.
    Marongiu B, Piras A, Porcedda S, Tuveri E. Excess enthalpies of chloroalkylbenzene + n-heptane(or)cyclohexane mixtures. J Therm Anal Calorim. 2007;91(1):37–46.CrossRefGoogle Scholar
  4. 4.
    Mukesh B, Gowrisankar M, Srinivasa Krishna T, et al. Studies on the importance of thermodynamic and transport properties of liquid mixtures at various temperatures. J Therm Anal Calorim. 2018. Scholar
  5. 5.
    Vasundhara P, Narasimharao C, Venkatramana L, Sivakumar K, Gardas RL. Thermodynamic properties of binary mixtures of aniline with halogenated aromatic hydrocarbons: measurements and correlations. J Mol Liq. 2015;202:158–64.CrossRefGoogle Scholar
  6. 6.
    Keown Mc, Nathanael J, Tarabar, Asim, editors. Toluene Toxicity: background, pathophysiology, epidemiology. 2015.Google Scholar
  7. 7.
    Streicher HZ, Gabow PA, Moss AH, Kono D, Kaehny WD. Syndromes of toluene sniffing in adults. Ann Intern Med. 1981;94:758–62.CrossRefGoogle Scholar
  8. 8.
    Devathasan G, Low D, Teoh PC, Wan SH, Wong PK. Complications of chronic glue (toluene) abuse in adolescents. Aust N Z J Med. 1984;14:39–43.CrossRefGoogle Scholar
  9. 9.
    Madhusudhan Reddy P, Sivakumar K, Venkatesu P. Densities and ultrasonic studies for binary mixtures of tetrahydrofuran with chlorobenzenes, chloro toluenes and nitrotoluenes at 298.15 K. Fluid Phase Equilib. 2011;310:74–81.CrossRefGoogle Scholar
  10. 10.
    Venkatramana L, Gardas RL, Sivakumar K, Dayananda Reddy K. Thermodynamics of binary mixtures: the effect of substituents in aromatics on their excess properties with benzylalcohol. Fluid Phase Equilib. 2014;367:7–21.CrossRefGoogle Scholar
  11. 11.
    Venkatramana L, Sivakumar K, Gardas RL, Dayananda Reddy K. Effect of chain length of alcohol on thermodynamic properties of their binary mixtures with benzyl alcohol. Thermochim Acta. 2014;581:123–32.CrossRefGoogle Scholar
  12. 12.
    Venkatramana L, Sreenivasulu K, Sivakumar K, Dayananda Reddy K. Thermodynamic properties of binary mixtures containing 1-alkanols. J Therm Anal Calorim. 2014;115:1829–34.CrossRefGoogle Scholar
  13. 13.
    TrezezaHowicez AJ, Kiyohara O, Benson GC. Excess volumes for n-alkanols +n-alkanes IV. Binary mixtures of decan-1-ol +n-pentane, +n-hexane, +n-octane, +n-decane, and +n-hexadecane. J Chem Thermodyn. 1981;13:253–60.CrossRefGoogle Scholar
  14. 14.
    Syamala V, Sivakumar K, Venkateswarlu P. Volumetric, ultrasonic and viscometric studies of binary mixtures of dimethyl sulphoxide with chloro and nitro substituted aromatic hydrocarbons at T = 303.15 K. J Chem Thermodyn. 2006;38:1553–62.CrossRefGoogle Scholar
  15. 15.
    Narendra K, Srinivasu Ch, Kalpana Ch, Narayanamurthy P. Excess thermo dynamic parameters of binary mixtures of toluene and mesitylene with anisaldehyde using ultrasonic technique at different temperatures. J Therm Anal Calorim. 2012;107:25–30.CrossRefGoogle Scholar
  16. 16.
    Brown HC, Cahn A. J Am Chem Soc. 1955;77:1715–23.CrossRefGoogle Scholar
  17. 17.
    Raveendra M, Narasimharao C, Venkatramana L, Sivakumar K, Dayananda Reddy K. FT-IR spectroscopic study of excess thermodynamic properties of liquid mixtures containing benzylalcohol with alkoxyalkanols. J Chem Thermodyn. 2016;92:97–107.CrossRefGoogle Scholar
  18. 18.
    Venkatramana L, Sivakumar K, Gardas RL, Dayananda Reddy K. Thermodynamics of binary mixtures: the effect of substituents in aromatics on their excess properties with benzylalcohol. Fluid Phase Equilib. 2014;367:7–21.CrossRefGoogle Scholar
  19. 19.
    Iloukhani H, Ghorbani R. Volumetric properties of N,N-dimethylformamide with 1,2-alkanediols at 20 °C. J Solution Chem. 1998;27:141–9.CrossRefGoogle Scholar
  20. 20.
    Assarson P, Eirich FR. Properties of amides in aqueous solution. I. Viscosity and density changes of amide-water systems. An analysis of volume deficiencies of mixtures based on molecular size differences (mixing of hard spheres). J Phys Chem. 1968;72:2710–9.CrossRefGoogle Scholar
  21. 21.
    Schaaff W. Computation of molecular radius from molar volume and velocity of sound. Z Med Phys. 1940;115:69–75.Google Scholar
  22. 22.
    Jacobson B. Intermolecular free lengths in the liquid state. Acta Chem Scand. 1952;8:1485–98.CrossRefGoogle Scholar
  23. 23.
    Jacobson B. Intermolecular free length in liquids in relation to sound velocity. J Chem Phys. 1952;20:927–8.CrossRefGoogle Scholar
  24. 24.
    AlTuwaim MS, Alkhaldi HAEK, Al-Jimaz SA, Mohammad AA. Comparative study physico-chemical properties of binary mixtures of N,N-dimethylformamide with 1-alkanols at different temperatures. J Chem Thermodyn. 2012;48:39–47.CrossRefGoogle Scholar
  25. 25.
    Dipali C, Anand A. Apparent molar volume and apparent molar adiabatic compressibility of 2-hydroxy-5 methyl acetophenone in N,N-dimethylformamide at different temperatures. J Therm Anal Calorim. 2012;107:21–40.CrossRefGoogle Scholar
  26. 26.
    Pal A, Singh W. Speeds of sound and isentropic compressibilities of xCH3O(CH2)2OH + (1 − x)H(CH2) ν(OCH2CH2)2OH (ν = 1, 2, and 4) at the temperature T = 298.15 K, The. J Chem Thermodyn. 1997;29:639–48.CrossRefGoogle Scholar
  27. 27.
    Kawaizumi F, Ohno M, Miyahara Y. Ultrasonic and volumetric investigation of aqueous solutions of amides. Bull Chem Soc Jpn. 1977;50:2229–33.CrossRefGoogle Scholar
  28. 28.
    Sreekanth K, Kondaiah M, Sravanakumar D, KrishnaRao D. Excess acoustical and volumetric properties and theoretical estimation of ultrasonic velocities in binary mixtures of 2-chloro aniline with acrylic esters at 308.15 K. J Solut Chem. 2012;41:1088–102.CrossRefGoogle Scholar
  29. 29.
    Sk Md Nayeem, Kondaiah M, Sreekanth K, Srinivasa Reddy M, Krishna Rao D. Thermoacoustic, volumetric, and viscometric investigations in the binary mixtures of 1,4-dioxane with n-hexane or n-heptane or n-octane. J Therm Anal Calorim. 2016;123:2241–55.CrossRefGoogle Scholar
  30. 30.
    Ali A, Nain AK, Kumar N. Mohammad Ibrahim. Ultrasonic studies on solutions of 1-pentanol with amides. Acoust Lett. 2001;24:199–205.Google Scholar
  31. 31.
    Pal A, Bhardway RK. Ultrasonic speeds and volumetric properties of dipropylene glycol monomethyl ether–n-alkylamine mixtures at 298.15 K. Z Phys Chem. 2002;216:1033–51.CrossRefGoogle Scholar
  32. 32.
    Redlich O, Kister AT. Algebraic representation of thermodynamic properties and the classification solutions. J Ind Eng Chem. 1948;40:345–448.CrossRefGoogle Scholar
  33. 33.
    Hwang CA, Holstc JC, Hall KR, Mansoori GA. A simple relation to predict or to correlate the excess functions of multicomponent mixtures. Fluid Phase Equilib. 1991;62:173–89.CrossRefGoogle Scholar
  34. 34.
    Raveendra M, Chandrasekhar M, Narasimharao C, Venkatramanna L, Siva Kumar K, Dayananda Reddy K. Elucidation of hydrogen bonding formation by a computational, FT-IR spectroscopic and theoretical study between benzyl alcohol and isomeric cresols. RSC Adv. 2016;6:27335–48.CrossRefGoogle Scholar
  35. 35.
    Pal Amalendu, Kumar Anil, Kumar Harsh. Volumetric properties of binary mixtures of some n-alkoxyethanols with 2-pyrrolidinone and N-methyl-2-pyrrolidinone at 298.15 K. Indian J Chem. 2002;41:2017–24.Google Scholar
  36. 36.
    Wang X, Yang F, Yuan G, Liu Z. Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K. J Chem Thermodyn. 2013;57:145–51.CrossRefGoogle Scholar
  37. 37.
    Hall L. The origin of ultrasonic absorption in water. Phys Rev. 1948;73:775–84.CrossRefGoogle Scholar
  38. 38.
    Desnoyers JE, Perron G. Treatment of excess thermodynamic quantities for liquid mixtures. J Solut Chem. 1997;26:749–55.CrossRefGoogle Scholar
  39. 39.
    Nan Z, Tan ZC. Thermodynamic properties of the binary mixture of water and n-butanol. J Therm Anal Calorim. 2007;87:539–44.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • P. Vasundhara
    • 1
  • M. Raveendra
    • 2
  • C. Narasimharao
    • 1
  • N. Venugopal Reddy
    • 3
  • Kasibhatta S. Kumar
    • 4
  • P. Venkateswarlu
    • 1
  1. 1.Department of ChemistryS.V. UniversityTirupatiIndia
  2. 2.Department of ChemistryP.V.K.N.Govt. Degree & P.G. CollegeChittoorIndia
  3. 3.Department of PhysicsS.V.Arts Degree & P.G. College (T.T.D’S)TirupatiIndia
  4. 4.Department of ChemistryS.V.Arts Degree & P.G. College (T.T.D’S)TirupatiIndia

Personalised recommendations