Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2213–2221 | Cite as

Oxidation and reduction kinetic of YBaCo4O7+δ and substituted oxygen carriers

  • Limin Hou
  • Qingbo Yu
  • Kun Wang
  • Fan Yang
  • Tianyao Wu
Article

Abstract

Kinetic analysis of YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ and Y0.15Zr0.1Dy0.75BaCo4O7+δ oxygen carriers for CLAS system has been performed with TG data. The materials are characterized with XRD for phase composition, SEM for particle morphology, and temperature-programmed thermogravimetry for oxidation and reduction reaction analysis. TG experiments are conducted with heating rates of 0.5, 1, and 2 K min−1 in thermal analyzer. The model-fitting approaches, Li Chung-Hsiung and Malek method, are used to estimate the most probable mechanism function. Different processes have different models, for the oxidation process, A1 is selected as the most probable mechanism function for the all samples under different heating rates. And for reduction process, A2/3 is selected as the most probable mechanism function for all samples under different heating rates. That is, nuclei and nuclei growth or their combination are the rate-determining step. In mechanism, activation energy E and pre-exponential factor A are obtained. And the obtained kinetic parameters can reasonably express the oxidation and reduction process.

Keywords

Oxidation/reduction Kinetic Oxygen carriers CLAS 

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 51576035, 51604078), the Major State Research Development Program of China (Grant No. 2017YFB0603603), the Fundamental Research Funds for the Central Universities (Grant No. N162504012), and the Post-Doctoral Science Foundation (Grant Nos. 2017M610185, 20170101).

References

  1. 1.
    Moghtaderi B, Song H. Reduction properties of physically mixed metallic oxide oxygen carriers in chemical looping combustion. Energy Fuels. 2010;24(10):5359–68.CrossRefGoogle Scholar
  2. 2.
    Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF. Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci. 2005;31(4):283–307.CrossRefGoogle Scholar
  3. 3.
    Ksepko E, Babinski P, Evdou A, Nalbandian L. Studies on the redox reaction kinetics of selected, naturally occurring oxygen carrier. J Therm Anal Calorim. 2016;124(1):1–44.CrossRefGoogle Scholar
  4. 4.
    Wang Y, Wang XY, Hua XN, Zhao CC, Wang W. The reduction mechanism and kinetics of Fe2O3 by hydrogen for chemical-looping hydrogen generation. J Therm Anal Calorim. 2017;129(3):1831–8.CrossRefGoogle Scholar
  5. 5.
    Wang BW, Li HY, Ding D, Shen QW, Zhao HB, Zheng CG. Chemical looping combustion characteristics of coal with Fe2O3 oxygen carrier. J Therm Anal Calorim. 2018;123(1):17–27.CrossRefGoogle Scholar
  6. 6.
    Lyngfelt A, Leckner B, Mattisson T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chem Eng Sci. 2001;56(10):3101–13.CrossRefGoogle Scholar
  7. 7.
    Song H, Shah K, Doroodchi E, Wall T, Moghtaderi B. Analysis on chemical reaction kinetics of CuO/SiO2 oxygen carriers for chemical looping air separation. Energy Fuels. 2014;28(1):173–82.CrossRefGoogle Scholar
  8. 8.
    Wang K, Yu QB, Hou LM, Zuo ZL, Qin Q, Ren HL. Simulation and energy consumption analysis of chemical looping air separation system on Aspen Plus. J Therm Anal Calorim. 2016;124(3):1555–60.CrossRefGoogle Scholar
  9. 9.
    Shah K, Moghtaderi B, Wall T. Selection of suitable oxygen carriers for chemical looping air separation: a thermodynamic approach. Energy Fuels. 2012;26(4):2038–45.CrossRefGoogle Scholar
  10. 10.
    Mattisson T, Lyngfelt A, Leion H. Chemical-looping with oxygen uncoupling for combustion of solid fuels. Int J Greenhouse Gas Control. 2009;3(1):11–9.CrossRefGoogle Scholar
  11. 11.
    Abad A, Adaez-Rubio I, Gaya P, Garc-Labiano F, de Diego LF, Adaez J. Demonstration of chemical-looping with oxygen uncoupling (CLOU) process in a 1.5 kW th continuously operating unit using a Cu-based oxygen carrier. Int J Greenhouse Gas Control. 2012;6(6):189–200.CrossRefGoogle Scholar
  12. 12.
    Arjmand M, Keller M, Leion H, Mattisson T, Lyngfelt A. Oxygen release and oxidation rates of MgAl2O4-supported CuO oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU). Energy Fuels. 2012;26(11):6528–39.CrossRefGoogle Scholar
  13. 13.
    Whitty K, Clayton C. Measurement and modeling of kinetics for copper-based chemical looping with oxygen uncoupling. In: Proceedings of the 2nd international conference on chemical looping, Darmstadt, Germany; 26–28 Sept 2012. pp 1–10.Google Scholar
  14. 14.
    Guo L, Zhao HB, Wang K, Mei DF, Ma ZJ, Zheng CG. Reduction kinetics analysis of sol–gel-derived CuO/CuAl2O4 oxygen carrier for chemical looping with oxygen uncoupling. J Therm Anal Calorim. 2016;123(1):745–56.CrossRefGoogle Scholar
  15. 15.
    Wang K, Yu QB, Qin Q. Reduction kinetics of Cu-based oxygen carriers for chemical-looping air separation. Energy Fuels. 2013;27(9):5466–74.CrossRefGoogle Scholar
  16. 16.
    Hossain MM, de Lasa HI. Reduction and oxidation kinetics of Co–Ni/Al2O3 oxygen carrier involved in a chemical-looping combustion cycles. Chem Eng Sci. 2010;65(1):98–106.CrossRefGoogle Scholar
  17. 17.
    Sedor KE, Hossain MM, de Lasa HI. Reduction kinetics of a fluidizable nickel, alumina oxygen carrier for chemical-looping combustion. Canad J Chem Eng. 2008;86(3):323–34.CrossRefGoogle Scholar
  18. 18.
    Motohashi T, Kadita S, Fjellvag H, Karppinen M, Yamauchi H. Uncommon oxygen intake/release capability of layered cobalt oxides REBaCo4O7+δ: novel oxygen-storage materials. Mater Sci Eng B. 2008;148(1):196–8.CrossRefGoogle Scholar
  19. 19.
    Karppinen M, Yanauchi H, Otani S. Oxygen nonstoichiometry in YBaCo4O7: large low-temperature oxygen absorption/desorption capability. Chem Mater. 2006;18(2):490–4.CrossRefGoogle Scholar
  20. 20.
    Kadita S, Kappinen M, Motohashi T, Yamauchi H. R-site substitution effect on the oxygen-storage capability of RBaCo4O7+δ. Chem Mater. 2008;20(20):6378–81.CrossRefGoogle Scholar
  21. 21.
    Wang S, Hao HS, Zhu BF, Jia JF, Hu X. Modifying the oxygen adsorption properties of YBaCo4O7 by Ca, Al, and Fe doping. J Mater Sci. 2008;43(15):5385–9.CrossRefGoogle Scholar
  22. 22.
    Hao HS, He QL, Cheng YG, Zhao LM. Oxygen adsorption/desorption behavior of YBaCo4O7+δ and its application to oxygen removal from nitrogen. J Rare Earth. 2009;27(5):815–8.CrossRefGoogle Scholar
  23. 23.
    Zhang SM. Study on the oxygen adsorption/desorption properties of doped-YBaCo4O7+δ and its oxygen permeation ability. MA Dissertation, ZhengZhou University, 2011.Google Scholar
  24. 24.
    Guo LJ. Study on the oxygen adsorption/desorption properties of YBaCo4O7+δ. MA Dissertation, ZhengZhou University, 2005.Google Scholar
  25. 25.
    Kozeeva LP, Kameneva MY, Lavrov AN, Podberezskaya NV. Synthesis and oxygen behavior of RBaCo4O7+δ (R = Y, Dy-Lu). Inorg Mater. 2013;49(6):626–31.CrossRefGoogle Scholar
  26. 26.
    Parkkima O, Yamauchi H, Karppinen M. Oxygen storage capacity and phase stability of variously substituted YBaCo4O7+δ. Chem Mater. 2013;25(4):599–604.CrossRefGoogle Scholar
  27. 27.
    Valldor M. Syntheses and structures of compounds with YBaCo4O7-type structure. Solid State Sci. 2004;35(28):251–66.CrossRefGoogle Scholar
  28. 28.
    Räsänen S, Motohashi T, Yamauchi H, Kappinen M. Ga-for-Co substitution in YBaCo4O7+δ: effect on high-temperature stability and oxygen-storage capacity. Solid State Ionics. 2012;208:31–5.CrossRefGoogle Scholar
  29. 29.
    Komiyama T, Motohashi T, Masubuchi Y, Kikkawa S. Synthesis, thermal stability, and oxygen intake/release characteristic of YBa(Co1−xAlx)4O7+δ. Mater Res Bull. 2010;45(10):1527–32.CrossRefGoogle Scholar
  30. 30.
    Jung-Hyun K, Arumugam M. Low thermal expansion RBa(Co, M)4O7 cathode materials based on tetrahedral-site cobalt ions for solid oxide fuel cells. Chem Mater. 2010;22(3):822–31.CrossRefGoogle Scholar
  31. 31.
    Rui ZB, Ding JJ, Li F, Lin YS, Li YD. YBaCo4O7+δ sorbent for oxygen-enriched carbon dioxide steam production at a low-temperature. Fuel. 2012;94(1):191–6.CrossRefGoogle Scholar
  32. 32.
    Nagai Y, Yamamoto T, Tanaka T, Yoshida S, Nonaka T, Okamoto T, Suda A, Sugiura M. X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr = 1). Catal Today. 2002;74(3–4):225–34.CrossRefGoogle Scholar
  33. 33.
    Valldor M, Andersson M. The structure of the new compound YBaCo4O7 with a magnetic feature. Solid State Sci. 2002;4(7):923–31.CrossRefGoogle Scholar
  34. 34.
    Hossain MM, de Lasa HI. Chemical-looping combustion (CLC) for inherent CO separations—a review. Chem Eng Sci. 2008;63(18):4433–51.CrossRefGoogle Scholar
  35. 35.
    Jin HG, Okamoto T, Ishida M. Development of a novel chemical-looping combustion: synthesis of a looping material with a double metal oxide of CoO–NiO. Energy Fuels. 1998;12(6):1272–7.CrossRefGoogle Scholar
  36. 36.
    Halikia I, Neou-Syngouna P, Kolitsa D. Isothermal kinetic analysis of the thermal decomposition of magnesium hydroxide using thermogravimetric data. Thermochim Acta. 1998;320(1–2):75–88.CrossRefGoogle Scholar
  37. 37.
    Wang SL, Lin SY, Chen TF. Reaction kinetics of solid-state cyclization of enalapril maleate investigated by isothermal FT-IR microscopic system. Chem Pharm Bull. 2001;49(4):402–6.CrossRefGoogle Scholar
  38. 38.
    Kubaschewsk O, Alcock CB. Metallurgical thermochemistry. 5th ed. Oxford: Pergamon; 1979.Google Scholar
  39. 39.
    Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2: part I: low temperature reduction of hematite. Thermochim Acta. 2006;447(1):89–100.CrossRefGoogle Scholar
  40. 40.
    Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2: part II: low temperature reduction of hematite. Thermochim Acta. 2007;456(2):75–88.CrossRefGoogle Scholar
  41. 41.
    Li CH. An integral approximation formula for kinetic analysis of nonisothermal TGA data. AIChE J. 1985;31(6):1036–8.CrossRefGoogle Scholar
  42. 42.
    Malek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim Acta. 1989;138(2):337–46.CrossRefGoogle Scholar
  43. 43.
    Hossain MM, Quddus MR, de Lasa HI. Reduction kinetics of La modified NiO/La-γAl2O3 oxygen carrier for chemical-looping combustion. Ind Eng Chem Res. 2010;49(21):11009–17.CrossRefGoogle Scholar
  44. 44.
    Hossain MM, de Lasa HI. Chemical-looping combustion (CLC) for inherent CO2 separations—a review. AIChE J. 2007;53(7):1817–29.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Limin Hou
    • 1
  • Qingbo Yu
    • 1
  • Kun Wang
    • 1
  • Fan Yang
    • 1
  • Tianyao Wu
    • 1
  1. 1.School of MetallurgyNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations