Skip to main content
Log in

Oxidation and reduction kinetic of YBaCo4O7+δ and substituted oxygen carriers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Kinetic analysis of YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ and Y0.15Zr0.1Dy0.75BaCo4O7+δ oxygen carriers for CLAS system has been performed with TG data. The materials are characterized with XRD for phase composition, SEM for particle morphology, and temperature-programmed thermogravimetry for oxidation and reduction reaction analysis. TG experiments are conducted with heating rates of 0.5, 1, and 2 K min−1 in thermal analyzer. The model-fitting approaches, Li Chung-Hsiung and Malek method, are used to estimate the most probable mechanism function. Different processes have different models, for the oxidation process, A1 is selected as the most probable mechanism function for the all samples under different heating rates. And for reduction process, A2/3 is selected as the most probable mechanism function for all samples under different heating rates. That is, nuclei and nuclei growth or their combination are the rate-determining step. In mechanism, activation energy E and pre-exponential factor A are obtained. And the obtained kinetic parameters can reasonably express the oxidation and reduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moghtaderi B, Song H. Reduction properties of physically mixed metallic oxide oxygen carriers in chemical looping combustion. Energy Fuels. 2010;24(10):5359–68.

    Article  CAS  Google Scholar 

  2. Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF. Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci. 2005;31(4):283–307.

    Article  CAS  Google Scholar 

  3. Ksepko E, Babinski P, Evdou A, Nalbandian L. Studies on the redox reaction kinetics of selected, naturally occurring oxygen carrier. J Therm Anal Calorim. 2016;124(1):1–44.

    Article  Google Scholar 

  4. Wang Y, Wang XY, Hua XN, Zhao CC, Wang W. The reduction mechanism and kinetics of Fe2O3 by hydrogen for chemical-looping hydrogen generation. J Therm Anal Calorim. 2017;129(3):1831–8.

    Article  CAS  Google Scholar 

  5. Wang BW, Li HY, Ding D, Shen QW, Zhao HB, Zheng CG. Chemical looping combustion characteristics of coal with Fe2O3 oxygen carrier. J Therm Anal Calorim. 2018;123(1):17–27.

    Article  Google Scholar 

  6. Lyngfelt A, Leckner B, Mattisson T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chem Eng Sci. 2001;56(10):3101–13.

    Article  CAS  Google Scholar 

  7. Song H, Shah K, Doroodchi E, Wall T, Moghtaderi B. Analysis on chemical reaction kinetics of CuO/SiO2 oxygen carriers for chemical looping air separation. Energy Fuels. 2014;28(1):173–82.

    Article  CAS  Google Scholar 

  8. Wang K, Yu QB, Hou LM, Zuo ZL, Qin Q, Ren HL. Simulation and energy consumption analysis of chemical looping air separation system on Aspen Plus. J Therm Anal Calorim. 2016;124(3):1555–60.

    Article  CAS  Google Scholar 

  9. Shah K, Moghtaderi B, Wall T. Selection of suitable oxygen carriers for chemical looping air separation: a thermodynamic approach. Energy Fuels. 2012;26(4):2038–45.

    Article  CAS  Google Scholar 

  10. Mattisson T, Lyngfelt A, Leion H. Chemical-looping with oxygen uncoupling for combustion of solid fuels. Int J Greenhouse Gas Control. 2009;3(1):11–9.

    Article  CAS  Google Scholar 

  11. Abad A, Adaez-Rubio I, Gaya P, Garc-Labiano F, de Diego LF, Adaez J. Demonstration of chemical-looping with oxygen uncoupling (CLOU) process in a 1.5 kW th continuously operating unit using a Cu-based oxygen carrier. Int J Greenhouse Gas Control. 2012;6(6):189–200.

    Article  CAS  Google Scholar 

  12. Arjmand M, Keller M, Leion H, Mattisson T, Lyngfelt A. Oxygen release and oxidation rates of MgAl2O4-supported CuO oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU). Energy Fuels. 2012;26(11):6528–39.

    Article  CAS  Google Scholar 

  13. Whitty K, Clayton C. Measurement and modeling of kinetics for copper-based chemical looping with oxygen uncoupling. In: Proceedings of the 2nd international conference on chemical looping, Darmstadt, Germany; 26–28 Sept 2012. pp 1–10.

  14. Guo L, Zhao HB, Wang K, Mei DF, Ma ZJ, Zheng CG. Reduction kinetics analysis of sol–gel-derived CuO/CuAl2O4 oxygen carrier for chemical looping with oxygen uncoupling. J Therm Anal Calorim. 2016;123(1):745–56.

    Article  CAS  Google Scholar 

  15. Wang K, Yu QB, Qin Q. Reduction kinetics of Cu-based oxygen carriers for chemical-looping air separation. Energy Fuels. 2013;27(9):5466–74.

    Article  CAS  Google Scholar 

  16. Hossain MM, de Lasa HI. Reduction and oxidation kinetics of Co–Ni/Al2O3 oxygen carrier involved in a chemical-looping combustion cycles. Chem Eng Sci. 2010;65(1):98–106.

    Article  CAS  Google Scholar 

  17. Sedor KE, Hossain MM, de Lasa HI. Reduction kinetics of a fluidizable nickel, alumina oxygen carrier for chemical-looping combustion. Canad J Chem Eng. 2008;86(3):323–34.

    Article  CAS  Google Scholar 

  18. Motohashi T, Kadita S, Fjellvag H, Karppinen M, Yamauchi H. Uncommon oxygen intake/release capability of layered cobalt oxides REBaCo4O7+δ: novel oxygen-storage materials. Mater Sci Eng B. 2008;148(1):196–8.

    Article  CAS  Google Scholar 

  19. Karppinen M, Yanauchi H, Otani S. Oxygen nonstoichiometry in YBaCo4O7: large low-temperature oxygen absorption/desorption capability. Chem Mater. 2006;18(2):490–4.

    Article  CAS  Google Scholar 

  20. Kadita S, Kappinen M, Motohashi T, Yamauchi H. R-site substitution effect on the oxygen-storage capability of RBaCo4O7+δ. Chem Mater. 2008;20(20):6378–81.

    Article  Google Scholar 

  21. Wang S, Hao HS, Zhu BF, Jia JF, Hu X. Modifying the oxygen adsorption properties of YBaCo4O7 by Ca, Al, and Fe doping. J Mater Sci. 2008;43(15):5385–9.

    Article  CAS  Google Scholar 

  22. Hao HS, He QL, Cheng YG, Zhao LM. Oxygen adsorption/desorption behavior of YBaCo4O7+δ and its application to oxygen removal from nitrogen. J Rare Earth. 2009;27(5):815–8.

    Article  Google Scholar 

  23. Zhang SM. Study on the oxygen adsorption/desorption properties of doped-YBaCo4O7+δ and its oxygen permeation ability. MA Dissertation, ZhengZhou University, 2011.

  24. Guo LJ. Study on the oxygen adsorption/desorption properties of YBaCo4O7+δ. MA Dissertation, ZhengZhou University, 2005.

  25. Kozeeva LP, Kameneva MY, Lavrov AN, Podberezskaya NV. Synthesis and oxygen behavior of RBaCo4O7+δ (R = Y, Dy-Lu). Inorg Mater. 2013;49(6):626–31.

    Article  CAS  Google Scholar 

  26. Parkkima O, Yamauchi H, Karppinen M. Oxygen storage capacity and phase stability of variously substituted YBaCo4O7+δ. Chem Mater. 2013;25(4):599–604.

    Article  CAS  Google Scholar 

  27. Valldor M. Syntheses and structures of compounds with YBaCo4O7-type structure. Solid State Sci. 2004;35(28):251–66.

    Article  Google Scholar 

  28. Räsänen S, Motohashi T, Yamauchi H, Kappinen M. Ga-for-Co substitution in YBaCo4O7+δ: effect on high-temperature stability and oxygen-storage capacity. Solid State Ionics. 2012;208:31–5.

    Article  Google Scholar 

  29. Komiyama T, Motohashi T, Masubuchi Y, Kikkawa S. Synthesis, thermal stability, and oxygen intake/release characteristic of YBa(Co1−xAlx)4O7+δ. Mater Res Bull. 2010;45(10):1527–32.

    Article  CAS  Google Scholar 

  30. Jung-Hyun K, Arumugam M. Low thermal expansion RBa(Co, M)4O7 cathode materials based on tetrahedral-site cobalt ions for solid oxide fuel cells. Chem Mater. 2010;22(3):822–31.

    Article  Google Scholar 

  31. Rui ZB, Ding JJ, Li F, Lin YS, Li YD. YBaCo4O7+δ sorbent for oxygen-enriched carbon dioxide steam production at a low-temperature. Fuel. 2012;94(1):191–6.

    Article  CAS  Google Scholar 

  32. Nagai Y, Yamamoto T, Tanaka T, Yoshida S, Nonaka T, Okamoto T, Suda A, Sugiura M. X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr = 1). Catal Today. 2002;74(3–4):225–34.

    Article  CAS  Google Scholar 

  33. Valldor M, Andersson M. The structure of the new compound YBaCo4O7 with a magnetic feature. Solid State Sci. 2002;4(7):923–31.

    Article  CAS  Google Scholar 

  34. Hossain MM, de Lasa HI. Chemical-looping combustion (CLC) for inherent CO separations—a review. Chem Eng Sci. 2008;63(18):4433–51.

    Article  CAS  Google Scholar 

  35. Jin HG, Okamoto T, Ishida M. Development of a novel chemical-looping combustion: synthesis of a looping material with a double metal oxide of CoO–NiO. Energy Fuels. 1998;12(6):1272–7.

    Article  CAS  Google Scholar 

  36. Halikia I, Neou-Syngouna P, Kolitsa D. Isothermal kinetic analysis of the thermal decomposition of magnesium hydroxide using thermogravimetric data. Thermochim Acta. 1998;320(1–2):75–88.

    Article  CAS  Google Scholar 

  37. Wang SL, Lin SY, Chen TF. Reaction kinetics of solid-state cyclization of enalapril maleate investigated by isothermal FT-IR microscopic system. Chem Pharm Bull. 2001;49(4):402–6.

    Article  CAS  Google Scholar 

  38. Kubaschewsk O, Alcock CB. Metallurgical thermochemistry. 5th ed. Oxford: Pergamon; 1979.

    Google Scholar 

  39. Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2: part I: low temperature reduction of hematite. Thermochim Acta. 2006;447(1):89–100.

    Article  CAS  Google Scholar 

  40. Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2: part II: low temperature reduction of hematite. Thermochim Acta. 2007;456(2):75–88.

    Article  CAS  Google Scholar 

  41. Li CH. An integral approximation formula for kinetic analysis of nonisothermal TGA data. AIChE J. 1985;31(6):1036–8.

    Article  CAS  Google Scholar 

  42. Malek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim Acta. 1989;138(2):337–46.

    Article  CAS  Google Scholar 

  43. Hossain MM, Quddus MR, de Lasa HI. Reduction kinetics of La modified NiO/La-γAl2O3 oxygen carrier for chemical-looping combustion. Ind Eng Chem Res. 2010;49(21):11009–17.

    Article  CAS  Google Scholar 

  44. Hossain MM, de Lasa HI. Chemical-looping combustion (CLC) for inherent CO2 separations—a review. AIChE J. 2007;53(7):1817–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 51576035, 51604078), the Major State Research Development Program of China (Grant No. 2017YFB0603603), the Fundamental Research Funds for the Central Universities (Grant No. N162504012), and the Post-Doctoral Science Foundation (Grant Nos. 2017M610185, 20170101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbo Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Yu, Q., Wang, K. et al. Oxidation and reduction kinetic of YBaCo4O7+δ and substituted oxygen carriers. J Therm Anal Calorim 134, 2213–2221 (2018). https://doi.org/10.1007/s10973-018-7253-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7253-4

Keywords

Navigation