Skip to main content
Log in

Molecular dynamics and thermodynamic simulations of segregation phenomena in binary metal nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An approach combining atomistic molecular dynamics (MD) and thermodynamic simulations has been applied to predict the distribution of components in binary Ni–Cu and Au–Ag nanoparticles consisting of 2000 atoms (of about 4 nm in size). The term ‘thermodynamic simulation’ has referred to solving, in some approximations, the Butler equation for a core–shell particle model. Both atomistic and thermodynamic approaches predict the surface segregation of Cu atoms in Ni–Cu nanoparticles and segregation of Ag to the surface of Au–Ag nanoalloys. Then, contrary to the Ni–Cu systems, some Au–Ag nanoparticles demonstrated an onion-like structure with the outer Ag monolayer. The results of MD and thermodynamic simulations agree with each other and with some available direct and indirect experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Buffat Ph, Borel J-P. Size effect on the melting temperature of gold particles. Phys Rev A. 1976;13:2287–98.

    Article  CAS  Google Scholar 

  2. Hori H, Teranishi T, Taki M, Yamada S, Miyake M, Yamamoto Y. Magnetic properties of nano-particles of Au, Pd and Pd/Ni alloys. J Magn Magn Mater. 2001;226–230:1910–1.

    Article  Google Scholar 

  3. Heurlin M, Magnusson MH, Lindgren D, Ek M, Wallenberg LR, Deppert K, Samuelson L. Continuous gas-phase synthesis of nanowires with tunable properties. Nature. 2012;492:90–4.

    Article  CAS  Google Scholar 

  4. Zare M, Ketabchi M. Effect of chromium element on transformation, mechanical and corrosion behavior of thermomechanically induced Cu–Al–Ni shape-memory alloys. J Therm Anal Calorim. 2017;127:2113–23.

    Article  CAS  Google Scholar 

  5. Chowdhury ND, Ghosh KS. Calorimetric studies of Ag–Sn–Cu dental amalgam alloy powders and their amalgams. J Therm Anal Calorim. 2017;130:623–37.

    Article  Google Scholar 

  6. Hamana D, Hamana M. Precipitation and dissolution-grains growth effects and kinetics during non-isothermal heating of deformed Cu–7 mass% Ag alloy. J Therm Anal Calorim. 2016;123:1063–71.

    Article  CAS  Google Scholar 

  7. Alexeev OS, Gates BC. Supported bimetallic cluster catalysts. Ind Eng Chem Res. 2003;42:1571–87.

    Article  CAS  Google Scholar 

  8. Guisbiers G, Abudukelimu G, Hourlier D. Size-dependent catalytic and melting properties of platinum-palladium nanoparticles. Nanoscale Res Lett. 2011;6:396.

    Article  Google Scholar 

  9. Paz-Borbón LO. Computational studies of transition metal nanoalloys. Berlin: Springer; 2011.

    Book  Google Scholar 

  10. Li X, Chen Q, McCue I, Snyder J, Crozier P, Erlebacher J, Sieradzki K. Dealloying of noble-metal alloy nanoparticles. Nano Lett. 2014;14:2569–77.

    Article  CAS  Google Scholar 

  11. Calagua A, Alarcon H, Paraguay F, Rodriguez J. Synthesis and characterization of bimetallic gold-silver core-shell nanoparticles: a green approach. Adv Nanoparticles. 2015;4:116–21.

    Article  CAS  Google Scholar 

  12. Cleri F, Rosato V. Tight-binding potentials for transition metals and alloys. Phys Rev B. 1993;40:22–33.

    Article  Google Scholar 

  13. Han SW, Kim Y, Kim K. Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis. J Colloid Interface Sci. 1998;208:272–8.

    Article  CAS  Google Scholar 

  14. Butler JAV. Thermodynamics of the surface of solutions. Proc R Soc. 1932;A135:348–63.

    Article  Google Scholar 

  15. Rusanov AI. The essence of the new approach to the equation of the monolayer state. Colloid J. 2007;69:131–43.

    Article  CAS  Google Scholar 

  16. Kaptay G. Modelling equilibrium grain boundary segregation, grain boundary energy and grain boundary segregation transition by the extended Butler equation. J Mater Sci. 2016;51:1738–55.

    Article  CAS  Google Scholar 

  17. Pellicer E, Varea A, Sivaraman KM, Pane S, Surinash S, Baro MD, Nogues J, Nelson BJ, Sort J. Grain boundary segregation and interdiffusion effects in the nickel-copper alloys: an effective means to improve the thermal stability of nanocrystalline nickel. ACS Appl Mater Interfaces. 2011;3:2265–74.

    Article  CAS  Google Scholar 

  18. Kaptay G. On the partial surface tension of components of a solution. Langmuir. 2015;31:5796–804.

    Article  CAS  Google Scholar 

  19. Korozs J, Kaptay G. Derivation of the Butler equation from the requirement of the minimum Gibbs energy of a solution phase, taking into account its surface area. Coll Surf A. 2017;533:296–301.

    Article  CAS  Google Scholar 

  20. Kaptay G. On the negative surface tension of solution and on spontaneous emulsification. Langmuir. 2017;33:10550–60.

    Article  CAS  Google Scholar 

  21. Foiles SM. Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method. Phys Rev B. 1985;32:7685–93.

    Article  CAS  Google Scholar 

  22. Zhou XW, Johnson RA, Wadley HNG. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B. 2004;69:144113.

    Article  Google Scholar 

  23. Grochola G, Russo SP, Snook IK. On fitting a gold embedded atom method potential using the force matching method. J Chem Phys. 2005;123:204719.

    Article  Google Scholar 

  24. Williams PL, Mishin Y, Hamilton JC. An embedded-atom potential for the Cu-Ag system. Model Simul Mater Sci Eng. 2006;14:817–33.

    Article  CAS  Google Scholar 

  25. Lewis LJ, Jensen P, Barrat J-L. Melting, freezing and coalescence of gold nanonoclusters. Phys Rev B. 1997;56:2248–57.

    Article  CAS  Google Scholar 

  26. Qi Y, Cagin T, Johnson WL, Goddard WA. Melting and crystallization in Ni nanoclusters: The mesoscale regime. J Chem Phys. 2001;114:385–94.

    Article  Google Scholar 

  27. Samsonov VM, Bembel AG, Shakulo OV, Vasilyev SA. Comparative molecular dynamics study of melting and crystallization of Ni and Au nanoclusters. Crystallogr Rep. 2014;59:580–5.

    Article  CAS  Google Scholar 

  28. Samsonov VM, Vasilyev SA, Talyzin IV, Ryzhkov YuA. On reasons for the hysteresis of melting and crystallization of nanoparticles. J Exp Theor Phys. 2016;103:94–9.

    Article  CAS  Google Scholar 

  29. Dick K, Dhanasekaran T, Xhang Z, Meisel D. Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc. 2002;124:2312–7.

    Article  CAS  Google Scholar 

  30. Castro T, Reifenberger R, Choi E, Andres RP. Size-dependent melting temperature of individual nanometer-sized metallic clusters. Phys Rev B. 1990;42:8548–56.

    Article  CAS  Google Scholar 

  31. Wang L, Zhang Y, Bian X, Chen Y. Melting of Cu nanoclusters by molecular dynamics simulation. Phys Lett A. 2003;310:197–202.

    Article  CAS  Google Scholar 

  32. Gafner SL, Kosterin SV, Gafner JJ. Formation of structural modifications in copper nanoclusters. Phys Solid State. 2007;49:1558–63.

    Article  CAS  Google Scholar 

  33. Peters KF, Cohen JB, Chung Y-W. Melting of Pb nanocrystals. Phys Rev B. 1998;21:13430–8.

    Article  Google Scholar 

  34. Samsonov VM, Vasilyev SA, Bembel AG. Size dependence of the melting temperature of metallic nanoclusters from the viewpoint of the thermodynamic theory of similarity. Phys Met Metallogr. 2016;117:749–55.

    Article  CAS  Google Scholar 

  35. Handbook of physical quantities, ed. by IS Grigorev, EZ Meilikhov. Boca Raton: CRC Press LLC; 1997.

  36. Samsonov VM. Conditions for the applicability of a thermodynamic description of highly disperse and microheterogeneous systems. Russ J Phys Chem. 2002;76:1863–7.

    Google Scholar 

  37. Samsonov VM, Bazulev AN, Sdobnyakov N. On applicability of Gibbs thermodynamics to nanoparticles. Centr Eur J Phys. 2003;1:474–84.

    CAS  Google Scholar 

  38. Guggenheim MA. Modern thermodynamics by the method of Willard Gibbs. London: Methuen and Co Ltd; 1933.

    Book  Google Scholar 

  39. Alchagirov AB, Alchairov BB, Taova TM, Khokonov KhB. Surface energy and surface tension of solid and liquid metals Recommended values. Trans Join Weld Res Inst Osaka Univ. 2001;30:287–91.

    CAS  Google Scholar 

  40. Wilson NT, Johnston RL. A theoretical study of atom ordering in coper-gold nanoalloy clusters. J Mater Chem. 2002;12:2913–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Education and Science of the Russian Federation in the framework of the State Program in the Field of the Research Activity (No. 3.5506.2017/BP) and by Russian Foundation for Basic Research (Projects No. 16-33-60171 and No. 18-03-00132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Samsonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsonov, V.M., Bembel, A.G., Kartoshkin, A.Y. et al. Molecular dynamics and thermodynamic simulations of segregation phenomena in binary metal nanoparticles. J Therm Anal Calorim 133, 1207–1217 (2018). https://doi.org/10.1007/s10973-018-7245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7245-4

Keywords

Navigation