Skip to main content
Log in

Hermetic thermal behaviors and specific heat capacities of bis(aminofurazano)furazan and bis(nitrofurazano)furazan

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal behaviors of bis(aminofurazano)furazan (BAFF) and bis(nitrofurazano)furazan (BNFF) were studied by the differential scanning calorimetry (DSC) method with a special hermetic high-pressure crucible and compared to that with a common standard Al crucible. The exothermic decomposition processes of the two compounds were completely revealed. The extrapolated onset temperature, peak temperature and enthalpy of exothermic decomposition at the heating rate of 10 °C min−1 are 290.2, 313.4 °C and − 2174 J g−1 for BAFF, and 265.8, 305.0 °C and − 2351 J g−1 for BNFF, respectively. The apparent activation energies of the decomposition process for the two compounds are 115.7 and 131.7 kJ mol−1, respectively. The self-accelerating decomposition temperatures and critical temperatures of thermal explosion are 247.5 and 368.7 °C for BAFF, and 249.6 and 268.1 °C for BAFF, respectively. Both BAFF and BNFF present high thermal stability. The specific heat capacities for the two compounds were determined with the micro-DSC method, and the specific heat capacities and molar heat capacities at 298.15 K are 1.0921 J g−1 K−1 and 257.9 J mol−1 K−1 for BAFF, and 1.0419 J g−1 K−1 and 308.5 J mol−1 K−1 for BNFF, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kinney R, Harwood HJ. The structure of furazan oxides. J Am Chem Soc. 1927;49:514–6.

    Article  CAS  Google Scholar 

  2. Olofson RA, Michelman JS. Furazan. J Org Chem. 1965;30:1854–6.

    Article  CAS  Google Scholar 

  3. Li ZX, Tang SQ. Review on the synthesis of furoxan derivatives. Chin J Energy Mater. 2006;14(1):77–9.

    Google Scholar 

  4. Huang M, Li HZ, Huang YG, Dong HS. Synthesis of diaminoazofurazan and diaminoazoxyfurazan. Energy Mater. 2004;12:91–4.

    CAS  Google Scholar 

  5. Sheremetev AB. Chemistry of furazans fused to five-membered rings. J Heterocycl Chem. 1995;32:371–5.

    Article  CAS  Google Scholar 

  6. Sheremetev AB, Kulgina VO, Aleksandrova NS, Dmitriev DE, Strelenko YA, Lebedev VP, Matyushin YN. Dinitro trifurazans with oxy, azo, and azoxy bridges. Propellant Explos Pyrotech. 1998;23:142–8.

    Article  CAS  Google Scholar 

  7. Ivanova OA, Averina EB, Kuznetsova TS, Zefirov NS. Synthesis of new 3,4-disubstituted furazans. Chem Heterocycl Commun. 2000;36:1091–6.

    Article  CAS  Google Scholar 

  8. Sheremetev AB, Mantseva EV, Dmitriev DE, Sirovskii FS. Transetherification of difurazanyl ethers as a route to unsymmetrical derivatives of difurazanyl ether. Russ Chem Bull. 2002;111:659–62.

    Article  Google Scholar 

  9. Talawar MB, Sivabalan R, Senthilkumar N, Prabhu G, Asthana SN. Synthesis characterization and thermal studies on furazan and tetrazine-based high energy materials. J Hazard Mater. 2004;113:11–5.

    Article  CAS  PubMed  Google Scholar 

  10. Sheremetev AB, Shamshina YL, Dmitriev DE. Synthesis of 3-alkyl-4-aminofurazans. Russ Chem Bull. 2005;54:1032–6.

    Article  CAS  Google Scholar 

  11. Sheremetev AB, Palysaeva NV, Struchkova MI. The first synthesis of 3-nitro-4-((s-tetrazin-3-yl)amino)furazans. Mendeleev Commun. 2010;20:350–3.

    Article  CAS  Google Scholar 

  12. Chavez D, Klapötke TM, Parrish D, Piercey D, Stierstorfer GJ. The synthesis and energetic properties of 3,4-bis(2,2,2-trinitroethylamino)furazan (BTNEDAF). Propellant Explos Pyrotech. 2014;39:641–8.

    Article  CAS  Google Scholar 

  13. Sheremetev AB, Lyalin BV, Kozeev AM, Palysaeva NV, Struchkova MI, Suponitsky KY. A practical anodic oxidation of aminofurazans to azofurazans: an environmentally friendly Route. RSC Adv. 2015;47:37617–9.

    Article  CAS  Google Scholar 

  14. Makhova NN, Ovchinnikov IV, Kulikov AS, Khakimov DV, Molchanova MS, Pivina TS. Diaminofuroxan: synthetic approaches and computer-aided study of thermodynamic stability. Propellant Explos Pyrotech. 2012;37:549–57.

    Article  CAS  Google Scholar 

  15. Sheremetev AB, Kulagina VO, Ivanova EA. Zero-hydrogen furazan macrocycles with oxy and azo bridges. J Org Chem. 1996;61:1510–2.

    Article  CAS  Google Scholar 

  16. Zelenin AK, Trudell ML, Gilardi RD. Synthesis and structure of dinitroazofurazan. J Heterocycl Chem. 1998;35:151–5.

    Article  CAS  Google Scholar 

  17. Pagoria PF. A review of energy materials synthesis. Thermochim Acta. 2002;384:187–8.

    Article  CAS  Google Scholar 

  18. Sikder AK, Sikder NA. Review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater. 2004;112:1–15.

    Article  CAS  PubMed  Google Scholar 

  19. Zheng W, Wang JN. Review on 3,4-bisnitrofurazanfruoxan (DNTF). Chin J Energy Mater. 2006;14(6):463–4 (in Chinese).

    CAS  Google Scholar 

  20. Hu HX, Zhang ZZ, Zhao FQ, Xiao C, Wang QH, Yuan BH. A study on the properties and application of high energy density material 3,4-bisnitrofurazanfruoxan. Acta Amamentarii. 2004;25(2):155–8.

    CAS  Google Scholar 

  21. Zhou YS, Zhang ZZ, Li JK, Guan XR, Huang XP, Zhou C. Crystal structure of 3,4-bisnitrofurazanfruoxan. Chin J Explos Propell. 2005;28(2):43–4.

    CAS  Google Scholar 

  22. Wang QH. Properties of DNTF-base melting cast explosives. Chin J Explos Propell. 2003;26(3):57–9.

    Google Scholar 

  23. Zhao FQ, Chen P, Hu RZ. Thermochemical properties and non-isothermal decomposition reaction kinetics of 3,4-bisnitrofurazanfruoxan. J Hazard Mater. 2004;113:67–71.

    Article  CAS  Google Scholar 

  24. Zhao FQ, Chen P, Luo Y. Study on the composite modified double base propellant containing 3,4-bisnitrofurazanfruoxan. J Propuls Technol. 2004;26(6):570–3.

    Google Scholar 

  25. Wang J, Dong HS, Huang YG, Li JS. Studies on the preparation and crystal structure of 3,4-diaminofurazanfruoxan. Acta Chim Sin. 2006;64(2):158–62.

    CAS  Google Scholar 

  26. Zhang Y, Zhou C, Wang BZ, Zhou YS, Xu KZ, Jia SY, Zhao FQ. Synthesis and characteristics of bis(nitrofurazano)furazan (BNFF), an insensitive material with high energy-density. Propellant Explos Pyrotech. 2014;39:809–14.

    Article  CAS  Google Scholar 

  27. Wang XJ, Xu KZ, Sun Q, Wang BZ, Zhou C, Zhao FQ. The insensitive energetic material trifurazano-oxacycloheptatriene (TFO): synthesis and detonation properties. Propellant Explos Pyrotech. 2014;40:9–12.

    Article  CAS  Google Scholar 

  28. Kim TK, Choe JH, Lee BW, Chung KH. Synthesis and characterization of BNFF analogues. Bull Korean Chem Soc. 2012;33:2765–8.

    Article  CAS  Google Scholar 

  29. Zhao K, Wang HX, Jiang QL, Liu RP. The research on volatility of 3,4-bisnitrofurazanfruoxan. Sci Tech Eng. 2014;14(29):271–3.

    CAS  Google Scholar 

  30. Mukherjee I, Rosolen M. Thermal transitions of gelatin evaluated using DSC sample pans of various seal integrities. J Therm Anal Calorim. 2013;114:1161–6.

    Article  CAS  Google Scholar 

  31. Zhong Y, Li X, Gu Z, Wang X, Yang L, Yang X, Zhang Z, Zhong B. Thermal studies on Li(CH3CN)4PF6 and Li(C4H10O2)2PF6 complexes by the TG–DTA–MS and DSC. J Therm Anal Calorim. 2018;131:1287–93.

    Article  CAS  Google Scholar 

  32. Muñoz-Sánchez B, Nieto-Maestre J, Imbuluzqueta G, MarañónIñigo I, Iparraguirre-Torres I, García-Romero A. A precise method to measure the specific heat of solar salt-based nanofluids. J Therm Anal Calorim. 2017;129:905–10.

    Article  CAS  Google Scholar 

  33. Zhang Y, Wu H, Xu KZ, Zhang WT, Song JR, Zhao FQ, Hu RZ. Thermolysis, non-isothermal decomposition kinetics, specific heat capacity and adiabatic time-to-explosion of (Cu(NH3)4)(DNANT)2 [DNANT = Dinitroacetonitrile). J Phys Chem A. 2014;118:1168–74.

    Article  CAS  PubMed  Google Scholar 

  34. Ditmars DA, Ishihara S, Chang SS, Bernstein G, West ED. Enthalpy and heat-capacity standard reference material: synthetic sapphire (alpha-Al-2O3) from 10 to 2250 K. J Res Natl Bur Stand. 1982;87(2):159–63.

    Article  CAS  Google Scholar 

  35. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–5.

    Article  CAS  Google Scholar 

  36. Ozawa TA. Method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  37. Zhang TL, Hu RZ, Xie Y, Li FP. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  CAS  Google Scholar 

  38. Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2008 (in Chinese).

    Google Scholar 

  39. Xu KZ, Song JR, Zhao FQ, Ma HX, Gao HX, Chang CR, Ren YH, Hu RZ. Thermal behavior, specific heat capacity and adiabatic time-to-explosion of G(FOX-7). J Hazard Mater. 2008;158:333–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21673178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Zhen Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, ZC., Du, MY., Zhai, LJ. et al. Hermetic thermal behaviors and specific heat capacities of bis(aminofurazano)furazan and bis(nitrofurazano)furazan. J Therm Anal Calorim 133, 1379–1385 (2018). https://doi.org/10.1007/s10973-018-7242-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7242-7

Keywords

Navigation