Skip to main content
Log in

Thermal study of CVD metal–organic precursors

Zirconium(IV) and yttrium(III) 2,2,6,6-tetramethyl-3,5-heptanedionates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The pressure of the saturated and unsaturated vapors of Zr(thd)4 and Y(thd)3 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) has been measured by the static method with a membrane-gauge manometer in a wide interval of temperatures: 473–623 K for Zr(thd)4 and 424–605 K for Y(thd)3. As a result of this study, the thermal stability of compounds under study was reliably established. From the unsaturated vapor data, it was concluded that Zr(thd)4 passes into a gas phase as a monomer up to its decomposition while gas phase over Y(thd)3(cond) contains some polymers. Equations approximating the dependences of saturated vapor pressure on temperature and also the enthalpies and entropies of sublimation [Zr(thd)4, Y(thd)3] and vaporization [Y(thd)3] were obtained. The thermal behavior of the complexes was also investigated by differential scanning calorimetry, and the thermodynamic parameters of phase transitions (Ttr, ΔtrH °Ttr ) were determined. Obtained information was compared with previous published data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hitchman ML, Jensen KF, editors. Chemical vapor deposition: principles and applications. London: Academic; 1993.

    Google Scholar 

  2. Syrkin VG. CVD method. Chemical vapor-phase deposition. Moscow: Nauka; 2000 (in Russian).

    Google Scholar 

  3. Morozova EA, Dobrokhotova ZV, Alikhanyan AS. Evaluation of standard enthalpy of formation of copper(I) pivalate. J Therm Anal Calorim. 2017;130:2211–4.

    Article  CAS  Google Scholar 

  4. Krisyuk VV, Sysoev SV, Turgambaeva AE, Nazarova AA, Koretskaya TP, Igumenov IK, Morozova NB. Thermal behavior of methoxy-substituted Pd and Cu β-diketonates and their heterobimetallic complex. J Therm Anal Calorim. 2017;130:1105–10.

    Article  CAS  Google Scholar 

  5. Wahl G, Metz Ch, Samoilenkov S. Thermal barrier coatings. J Phys IV Fr. 2001;11(Pr3):835–46.

    Article  Google Scholar 

  6. Préauchat B, Drawin S. Isothermal and cycling properties of zirconia-based thermal barrier coatings deposited by PECVD. Surf Coat Technol. 2001;146:94–101.

    Article  Google Scholar 

  7. Tu R, Goto T. Thermal cycle resistance of yttria stabilized zirconia coatings prepared by MOCVD. Mater Trans. 2005;46:1318–23.

    Article  CAS  Google Scholar 

  8. Garcia JRV, Goto T. Thermal barrier coatings produced by chemical vapor deposition. Sci Technol Adv Mater. 2003;4:397–402.

    Article  Google Scholar 

  9. Dychtoń K, Drajewicz M, Pytel M, Rokicki P, Nowotnik A. Yttria-stabilized zirconia–alumina composite sintering temperature effect on thermal diffusivity. J Therm Anal Calorim. 2016;126:1–7.

    Article  Google Scholar 

  10. Wahl G, Nemetz W, Giannozzi M, Rushworth S, Baxter D, Archer N, Cernuschi F, Boyle N. Chemical vapor deposition of TBC: an alternative process for gas turbine components. J Eng Gas Turbines Power. 2000;123:520–4.

    Article  Google Scholar 

  11. Peshkova VM, Mel’chakova NV. β-Diketony (β-diketones). Moscow: Nauka; 1986 (in Russian).

    Google Scholar 

  12. Fulem M, Ruzicka K, Ruzicka V, Šimecek T, Hulicius E, Pangrác J. Vapour pressure and heat capacities of metal organic precursors, Y(thd)3 and Zr(thd)4. J Cryst Growth. 2004;264:192–200.

    Article  CAS  Google Scholar 

  13. Mishin VY, Solov’ev SM, Chimenov PP, Voronin AS, Kapitonov VI, Rubcov EM, Soloschenkov PS, Isupov VK, Prokoptschuk YZ. Volatile β-diketonates of actinides and some possibilities of their practical use. Radiokhimiya. 1985;27:354–61 (in Russian).

    CAS  Google Scholar 

  14. Morozova NB, Sysoev SV, Igumenov IK, Golubenko AN. Study of temperature dependence of saturated vapor pressure of Zr(IV) β-diketonates. J Therm Anal. 1996;46:1367–73.

    Article  CAS  Google Scholar 

  15. Gubareva AI, Gerasimov PA, Morozova NB, Fedotova NE, Igumenov IK. Termokhimicheskie svoistva tetrakis-dipivaloilmetanata zirkonia(IV). Zh Prikl Khim. 1993;66:907–10 (in Russian).

    CAS  Google Scholar 

  16. Jeevan TSA, Arockiasamy S, Mathews T, Raghunathan VS, Nagaraja KS. Evaluation of enthalpy of sublimation of Zr(tmhd)4 by using thermogravimetric transpiration method. Mater Lett. 2008;62:4170–2.

    Article  CAS  Google Scholar 

  17. Bespyatov MA, Cherniaikin IS, Zherikova KV, Naumov VN, Igumenov IK, Gelfond NV, Morozova NB. Low-temperature heat capacity of tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)zirconium. J Chem Thermodyn. 2017;110:171–4.

    Article  CAS  Google Scholar 

  18. Waffenschmidt E, Musolf J, Heuken M, Heime K. Vapor pressure of Y, Ba, Cu precursors for the growth of YBa2Cu3O7 by MOVPE. J Supercond. 1992;5:119–25.

    Article  CAS  Google Scholar 

  19. Tobaly P, Lanchec G. Vapor pressure and enthalpy of sublimation of a series of organometallic complexes: Cu(DPM)2, Y(DPM)3 Ba(DPM)2 and some derivatives. J Chem Thermodyn. 1993;25:503–10.

    Article  CAS  Google Scholar 

  20. Colominas C, Lau KH, Hildenbrand DL, Crouch-Baker S, Sanjuro A. Vapor pressures of the copper and yttrium β-diketonate MOCVD precursors. J Chem Eng Data. 2001;46:446–50.

    Article  CAS  Google Scholar 

  21. Selvakumar J, Nagaraja KS. Synthesis and thermal analysis of yttrium metallorganic complexes for evaluation as chemical vapor deposition precurcors. Adv Mater Lett. 2012;3(2):130–5.

    Article  CAS  Google Scholar 

  22. Yuhya S, Kikuchi K, Yoshida M, Sugawara K, Shiohara Y. Volatilities of precursors for chemical vapor deposition of superconducting thin films. Mol Cryst Liq Cryst Inc Nonlinear Opt. 1990;184:231–5.

    Article  CAS  Google Scholar 

  23. Amano R, Sato A, Suzuki S. Sublimation behavior of tris(2,2,6,6-tetramethyl-3,5-heptadionato)lanthanoid(III). Bull Chem Soc Jpn. 1981;54:1368–74.

    Article  CAS  Google Scholar 

  24. Konstantinov SG, Dudchik GP, Korsun VP, Polachonok OG, Kostromina NA. Volatility and thermal stability of rare earth dipivaloylmethanates. In: Spitsyn VI, editor. Probl. Khim. Primen. β-Diketonatov Metallov. Moscow: Nauka; 1982. p. 143–5 (in Russian).

    Google Scholar 

  25. Zherikova KV, Morozova NB, Zelenina LN, Sysoev SV, Chusova TP, Igumenov IK. Thermal properties of hafnium(IV) and zirconium(IV) β-diketonates. J Therm Anal Calorim. 2008;92:729–34.

    Article  CAS  Google Scholar 

  26. Zherikova KV, Morozova NB. Crystal structures of hafnium(IV) and zirconium(IV) complexes with β-diketones. J Struct Chem. 2012;53:761–7.

    Article  CAS  Google Scholar 

  27. Spijksma GI, Bouwmeester HJM, Blank DHA, Fischer A, Henry M, Kessler VG. Chemistry of 2,2,6,6,-tetramethyl-3,5-heptanedione (Hthd) modification of zirconium and hafnium propoxide precursors. Inorg Chem. 2006;45:4938–50.

    Article  CAS  PubMed  Google Scholar 

  28. Eisentraut KJ, Sievers RE. Volatile rare earth chelates. J Am Chem Soc. 1965;87:5254–6.

    Article  CAS  Google Scholar 

  29. Eisentraut KJ, Sievers RE, Coucouvanis D, Fackler JP. Volatile rare-earth chelates of 2,2,6,6-tetramethylheptane-3,5-dione. In: Jolly WL, editor. Inorganic syntheses, vol. 11. New York: McGraw-Hill Book Co; 1968. p. 94–8.

    Google Scholar 

  30. Gromilov SA, Baidina IA, Prokhorova SA, Stabnikov PA. Crystal and molecular structure of monomeric yttrium(III) dipivalylmethanate. Arrangement of adsorbed layers. J Struct Chem. 1995;36:496–501.

    Article  Google Scholar 

  31. Vikulova ES, Zherikova KV, Korolkov IV, Zelenina LN, Chusova TP, Sysoev SV, Alferova NI, Morozova NB, Igumenov IK. Thermal investigation of mixed-ligand magnesium complexes with beta-diketonates and diamines as potential MOCVD precursors. J Therm Anal Calorim. 2014;118:849–56.

    Article  CAS  Google Scholar 

  32. Suvorov AV. Thermodynamic chemistry of the vapor state. Leningrad: Khimija; 1970 (in Russian).

    Google Scholar 

  33. Zelenina LN, Chusova TP, Vasilyeva IG. Thermodynamic investigation of the phase formation processes in the systems LnSe2–LnSe1.5 (Ln = La, Ce, Pr, Nd). J Chem Thermodyn. 2013;57:101–7.

    Article  CAS  Google Scholar 

  34. Girichev GV, Giricheva NI, Belova NV, Kaul AR, Kuz’mina NP, Gorbenko OY. Study of thermal stability of yttrium dipivaloylmethanate by mass spectrometry. Zh Neorg Khim. 1993;38:342–5 (in Russian).

    CAS  Google Scholar 

  35. Bykov AF, Semyannikov PP, Igumenov IK. Mass-spectrometric study of gas-phase thermal stability of yttrium(III) tris-dipivaloylmethanate. J Therm Anal. 1992;38:1477–86.

    Article  CAS  Google Scholar 

  36. Titov VA, Kokovin GA. In: Kokovin GA, editor. Mathematics in chemical thermodynamics. Novosibirsk: Nauka; 1980. p. 98–105.

    Google Scholar 

  37. Zelenina LN, Titov VA, Chusova TP, Stenin YG, Titov AA. On the thermodynamic properties of germanium-iodide compounds. J Chem Thermodyn. 2003;35:1601–12.

    Article  CAS  Google Scholar 

  38. Titov AA, Titova EF, Zelenina LN, Chusova TP. Joint processing of experimental data on melting, evaporation, and sublimation processes. Russ J Phys Chem A. 2014;88:1078–9.

    Article  CAS  Google Scholar 

  39. Zherikova KV, Zelenina LN, Chusova TP, Gelfond NV, Morozova NB. Thermodynamic study of sublimation, melting and vaporization of scandium(III) dipivaloylmethanate derivatives. J Chem Thermodyn. 2016;101:162–7.

    Article  CAS  Google Scholar 

  40. Luten HA, Rees WS, Goedken VL. Preparation and structural characterization of, and chemical vapor deposition studies with, certain yttrium tris(β-diketonate) compounds. Chem Vap Depos. 1996;2:149–61.

    Article  CAS  Google Scholar 

  41. Gleizes A, Foulon J. Yttrium tetramethylheptanedionates: syntheses, crystal and molecular structures and thermal behaviours of Y(thd)3·H2O and Y(thd)3. Inorg Chim Acta. 1993;209:47–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by Russian Scientific Foundation according to the research Project No. 16-19-10325. We also thank Federal Agency for Scientific Organizations for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Zelenina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenina, L.N., Chusova, T.P., Zherikova, K.V. et al. Thermal study of CVD metal–organic precursors. J Therm Anal Calorim 133, 1157–1165 (2018). https://doi.org/10.1007/s10973-018-7241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7241-8

Keywords

Navigation