Three-dimensional computational fluid dynamics modeling of proton exchange membrane electrolyzer with new flow field pattern

  • Somayeh Toghyani
  • Ebrahim Afshari
  • Ehsan Baniasadi
Article
  • 15 Downloads

Abstract

The performance of a proton exchange membrane electrolyzer cell directly depends on the arrangement of flow field in bipolar plates (BPs). The design of flow field in BPs should be in a way that a uniform distribution of flow is achieved; in this regard, a three-dimensional model of a new flow field arrangement with a cross section of 64 cm2 is proposed and the distribution of current density, temperature, and pressure drop is investigated. A numerical model is carried out at the steady-state, single-phase, and non-isothermal condition based on finite volume control method. The continuity, momentum, species, energy and electric charge balance equations together with electrochemical kinetics relations in different regions of PEM electrolyzer are solved in a single-domain model. The results of numerical model are compared against experimental data, and an acceptable agreement is observed at low and medium currents densities. The results reveal that the spiral flow field yields a uniform distribution of produced hydrogen and current density. Moreover, the proposed flow field design leads to a uniform distribution of temperature through the channel path. The availability of water and current density at vertical paths of the flow field are higher.

Keywords

PEM electrolyzer Flow field CFD modeling Single-domain model Hydrogen production 

List of symbols

a

Specific active surface area (m−1)

A

Superficial electrode area (m2)

Ck

Molar concentration of the kth species (mol m−3)

CP

Specific heat at constant pressure (J kg−1 K−1)

df

Diameter of pore (m)

\(D_{\text{k}}^{\text{eff}}\)

Effective diffusion coefficient of the kth component (m2 s−1)

F

Faraday constant, 96,487 (C mol−1)

i0

Exchange current density (A m−2)

j

Current density (A m−2)

k

Thermal conductivity (W m−1 K−1)

M

Molecular mass (kg mol−1)

p

Pressure (Pa)

R

Universal gas constant, 8.314 (J mol−1 K−1)

S

Source term

T

Temperature (K)

U

Uniformity index

Greek symbols

α

Transfer coefficient for reaction

γ

Concentration dependence

ɛ

Volume fraction

η

Over-potential (V)

K

Permeability (m2)

λ

Membrane water content

μ

Dynamic viscosity (Pa s)

σe

Ionic conductivity of membrane (S m−1)

ρ

Density (kg m−3)

\(\sigma_{\text{k}}^{\text{eff}}\)

Effective ionic conductivity coefficient of the membrane (S m−1)

φ

Potential (V)

Subscripts

avg

Average

a

Anode

c

Cathode

e

Membrane

oc

Open circuit

ref

Reference

References

  1. 1.
    Grigoriev SA, Kalinnikov AA. Mathematical modeling and experimental study of the performance of PEM water electrolysis cell with different loadings of platinum metals in electrocatalytic layers. Int J Hydrog Energy. 2017;42:1590–7.CrossRefGoogle Scholar
  2. 2.
    Sorgulu F, Dincer I. Thermodynamic analyses of a solar-based combined cycle integrated with electrolyzer for hydrogen production. Int J Hydrog Energy. 2018;43:1047–59.CrossRefGoogle Scholar
  3. 3.
    Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S. Future cost and performance of water electrolysis: an expert elicitation study. Int J Hydrog Energy. 2017;42:30470–92.CrossRefGoogle Scholar
  4. 4.
    Siracusano S, Baglio V, Briguglio N, Brunaccini G, Di Blasi A, Stassi A, et al. An electrochemical study of a PEM stack for water electrolysis. Int J Hydrog Energy. 2012;37:1939–46.CrossRefGoogle Scholar
  5. 5.
    Afshari E, Ziaei-Rad M, Shariati Z. A study on using metal foam as coolant fluid distributor in the polymer electrolyte membrane fuel cell. Int J Hydrog Energy. 2016;41:1902–12.CrossRefGoogle Scholar
  6. 6.
    Afshari E, Houreh NB. Numerical predictions of performance of the proton exchange membrane fuel cell with baffle (s)-blocked flow field designs. Int J Mod Phys B World Sci. 2014;28:1450097.CrossRefGoogle Scholar
  7. 7.
    Han B, Steen SM, Mo J, Zhang F-Y. Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy. Int J Hydrog Energy. 2015;40:7006–16.CrossRefGoogle Scholar
  8. 8.
    Abdin Z, Webb CJ, Gray EM. Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell. Int J Hydrog Energy. 2015;40:13243–57.CrossRefGoogle Scholar
  9. 9.
    Kim H, Park M, Lee KS. One-dimensional dynamic modeling of a high-pressure water electrolysis system for hydrogen production. Int J Hydrog Energy. 2013;38:2596–609.CrossRefGoogle Scholar
  10. 10.
    Nie JH, Cohen S, Chen Y, Carter B, Boehm RF. Velocity and temperature distributions in bipolar plate of PEM electrolysis cell. In: Proceedings of the ASME international mechanical engineering congress exposition (IMECE 2007), IMECE2007-42622; 2007.Google Scholar
  11. 11.
    Ruiz DDH, Sasmito AP, Shamim T. Numerical investigation of the high temperature PEM electrolyzer: effect of flow channel configurations. ECS Trans Electrochem Soc. 2013;58:99–112.CrossRefGoogle Scholar
  12. 12.
    Al Shakhshir S, Kær SK. On the effect of the flow field Plate’s geometry on the polymer electrolyte membrane water electrolysis cell’s performance. Meet Abstr Electrochem Soc. 2017;37:1668.Google Scholar
  13. 13.
    Afshari E, Jazayeri SA. Effects of the cell thermal behavior and water phase change on a proton exchange membrane fuel cell performance. Energy Convers Manag. 2010;51:655–62.CrossRefGoogle Scholar
  14. 14.
    Afshari E, Jazayeri SA. Analyses of heat and water transport interactions in a proton exchange membrane fuel cell. J Power Sources. 2009;194:423–32.CrossRefGoogle Scholar
  15. 15.
    Toghyani S, Nafchi FM, Afshari E, Hasanpour K, Baniasadi E, Atyabi SA. Thermal and electrochemical performance analysis of a proton exchange membrane fuel cell under assembly pressure on gas diffusion layer. Int. J. Hydrog Energy. 2018;43:4534–45.CrossRefGoogle Scholar
  16. 16.
    Hu J, Li J, Xu L, Huang F, Ouyang M. Analytical calculation and evaluation of water transport through a proton exchange membrane fuel cell based on a one-dimensional model. Energy. 2016;111:869–83.CrossRefGoogle Scholar
  17. 17.
    Toghyani S, Afshari E, Baniasadi E, Atyabi SA. Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer. Electrochim Acta. 2018;267:234–45.CrossRefGoogle Scholar
  18. 18.
    Xing L, Liu X, Alaje T, Kumar R, Mamlouk M, Scott K. A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell. Energy. 2014;73:618–34.CrossRefGoogle Scholar
  19. 19.
    Debe MK, Hendricks SM, Vernstrom GD, Meyers M, Brostrom M, Stephens M, et al. Initial performance and durability of ultra-low loaded NSTF electrodes for PEM electrolyzers. J Electrochem Soc Electrochem Soc. 2012;159:K165–76.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Somayeh Toghyani
    • 1
  • Ebrahim Afshari
    • 1
  • Ehsan Baniasadi
    • 1
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of IsfahanIsfahanIran

Personalised recommendations