Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 3, pp 1291–1307 | Cite as

Effect of different humectants on the thermal stability and fire hazard of nitrocellulose

  • Ruichao Wei
  • Yaping He
  • Zheng Zhang
  • Junjiang He
  • Richard Yuen
  • Jian Wang


In order to ensure the thermal safety of nitrocellulose (NC) mixtures in the process of handing, storage, and usage, it is necessary to obtain the thermal stability and fire hazard of NC with different humectants. In this study, the thermogravimetry experiments with four heating rates (5, 10, 15, 20 C min−1) under nitrogen and air atmospheres were performed to investigate the thermal stability of two NC-humectants, namely NC-water and NC-ethanol mixtures, and pure NC. Moreover, the influence of humectants on the fire hazard of NC was evaluated by the ISO 5660 Cone Calorimeter test. The humectant, water or ethanol, can increase the activation energy and reduce the fire risk of NC. Compared with the NC with water, the NC with ethanol exhibits lower activation energy and higher fire hazard.


Nitrocellulose Humectant Activation energy Thermal stability Fire hazard 

List of symbols


Pre-exponential factor


Specific heat/kJ kg−1°C−1


The orifice flow meter calibration constant


Constants known as the compensation effect parameters


Coefficients in describing critical heat flux


Activation energy/kJ mol−1


Energy released per unit mass of O2 consumed/kJ kg−1

f(\( \alpha \))

The dependence of the reaction rate on the extent of conversion

g(\( \alpha \))

The integral form of the reaction model


Convective heat transfer coefficient


Thermal conductivity/W m−1°C−1


Evaporation content of humectant


Mass loss range of decomposition of NC samples

\( \dot{m}_{{{\text{O}}_{2} }} \)

Mass flow rate of O2 after the ignition of the material/kg s−1

\( \dot{m}_{{{\text{O}}_{2} }}^{0} \)

Mass flow rates of O2 before the test/kg s−1

\( \Delta \)p

The orifice meter pressure differential

\( \dot{Q} \)

Heat release rate/kW

\( \dot{Q}^{''} \)

Heat release rate intensity measured from the cone calorimeter/kW m−2

\( \dot{q}^{''} \)

Incident radiant heat flux/kW m−2






Absolute temperature of the gas at the orifice meter


Onset decomposition temperature


Maximum decomposition temperature


Initial temperature of the sample


Gas constant/J mol−1 K−1


Mass ratio measured in TG (= W/Wo)


Mass of the sample in TG/mg


Initial sample mass in TG/mg


Flashover propensity

Greek letters

\( \alpha \)

Extent of conversion

\( \beta \)

Heating rate


Stefan–Boltzmann constant/W m−2 K−4




Density/g m−2





Different heating rates







This research was supported by the National Natural Science Foundation of China (No. 51376172) and the grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (Contract Grant Number CityU 11301015).


  1. 1.
    Hassan MA. Effect of malonyl malonanilide dimers on the thermal stability of nitrocellulose. J Hazard Mater. 2001;88(1):33–49.CrossRefGoogle Scholar
  2. 2.
    Fu G, Wang J, Yan M. Anatomy of Tianjin port fire and explosion: process and causes. Process Saf Prog. 2016;35(3):216–20.CrossRefGoogle Scholar
  3. 3.
    Tomaszewski W, Cieślak K, Zygmunt A. Influence of processing solvents on decomposition of nitrocellulose in smokeless powders studied by heat flow calorimetry. Poly Degrad Stab. 2015;111:169–75.CrossRefGoogle Scholar
  4. 4.
    Relational Information System for Chemical Accident Database(RISCAD) Accident ID: 84.
  5. 5.
    Tziarras Z. Cyprus—after the tragedy of July 11th, 2011. Glob Polit. 2011.Google Scholar
  6. 6.
    Zhao B. Facts and lessons related to the explosion accident in Tianjin Port, China. Nat Hazards. 2016;54:1–7.CrossRefGoogle Scholar
  7. 7.
    Katoh K, Soramoto T, Higashi E, Kawaguchi S, Kumagae K, Ito S, et al. Influence of water on the thermal stability of nitrocellulose. Sci Technol Energ Mater. 2014;75(1–2):44–9.Google Scholar
  8. 8.
    Dauerman L, Tajima Y. Thermal decomposition and combustion of nitrocellulose. Aiaa J. 1968;6(8):1468–73.CrossRefGoogle Scholar
  9. 9.
    Jr JEH, Zack PJ. Thermal decomposition of nitrocellulose propellants. J Forensic Sci. 1977;22(2):332–6.Google Scholar
  10. 10.
    Liu H, Fu R. Studies on thermal decomposition of nitrocellulose by pyrolysis-gas chromatography. J Anal Appl Pyrolysis. 1988;14(2–3):163–9.Google Scholar
  11. 11.
    Nakamura H, Matsuura N, Akiyosi M, Hara Y. The exothermal decomposition of nitrocellulose in mixed acids. J Jpn Explos Soc. 2000;61:108.Google Scholar
  12. 12.
    Mahajan R, Makashir P, Agrawal J. Combustion behaviour of nitrocellulose and its complexes with copper oxide. hot stage microscopic studies. J Therm Anal Calorim. 2001;65(3):935–42.CrossRefGoogle Scholar
  13. 13.
    Nakamura H, Nishi M, Akiyoshi M, Hara Y. Thermal degradation of nitrocellurose at low temperature. Kayaku Gakkaishi/J Jpn Explos Soc. 2002;63(3):121–7.Google Scholar
  14. 14.
    Phillips RW, Orlick CA, Steinberger R. The kinetics of the thermal decomposition of nitrocellulose. J Phys Chem. 2002;59(10):1034–9.CrossRefGoogle Scholar
  15. 15.
    Pourmortazavi S, Hosseini S, Rahimi-Nasrabadi M, Hajimirsadeghi S, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162(2):1141–4.CrossRefGoogle Scholar
  16. 16.
    Sovizi MR, Hajimirsadeghi SS, Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;168(2–3):1134–9.CrossRefGoogle Scholar
  17. 17.
    Katoh K, Ito S, Kawaguchi S, Higashi E, Nakano K, Ogata Y, et al. Effect of heating rate on the thermal behavior of nitrocellulose. J Therm Anal Calorim. 2010;100(1):303–8.CrossRefGoogle Scholar
  18. 18.
    Wei W, Cui B, Jiang X, Lu L. The catalytic effect of NiO on thermal decomposition of nitrocellulose. J Therm Anal Calorim. 2010;102(3):863–6.CrossRefGoogle Scholar
  19. 19.
    Katoh K, Le L, Arai M, Tamura M. Study on the spontaneous ignition of cellulose nitrate effect of the type of storage atmosphere (II). Sci Technol Energ Mater. 2003;64(6):236–40.Google Scholar
  20. 20.
    Katoh K, Ito S, Ogata Y, Kasamatsu JI, Miya H, Yamamoto M, et al. Effect of industrial water components on thermal stability of nitrocellulose. J Therm Anal Calorim. 2010;99(1):159–64.CrossRefGoogle Scholar
  21. 21.
    Guo S, Wang Q, Sun J, Liao X, Wang ZS. Study on the influence of moisture content on thermal stability of propellant. J Hazard Mater. 2009;168(1):536–41.CrossRefGoogle Scholar
  22. 22.
    Wei R, He Y, Liu J, He Y, Mi W, Yuen R, et al. Experimental study on the fire properties of nitrocellulose with different structures. Materials. 2017;10(3):316.CrossRefGoogle Scholar
  23. 23.
    WJ9028-2005. Specification for Nitrocellulose of Lacquers. National Defense Science and Technology Industry Committee, 2005.Google Scholar
  24. 24.
    Jessup RS, Prosen E. Heats of combustion and formation of cellulose and nitrocellulose (cellulose nitrate). J Res Natl Bur Std. 1950;44:387.CrossRefGoogle Scholar
  25. 25.
    He Y, He Y, Liu J, Li P, Chen M, Wei R, et al. Experimental study on the thermal decomposition and combustion characteristics of nitrocellulose with different alcohol humectants. J Hazard Mater. 2017;340:202.CrossRefGoogle Scholar
  26. 26.
    ISO 5660-1: 2002. Reaction-to-fire tests—heat release, smoke production and mass loss rate—part 1: Heat release rate(cone calorimeter method).Google Scholar
  27. 27.
    Babrauskas V, Grayson SJ. Heat release in fires[M]. Elsevier Applied Science; 1992.Google Scholar
  28. 28.
    Chen M, Liu J, Lin X, Huang Q, Yuen R, Wang J. Combustion characteristics of primary lithium battery at two altitudes. J Therm Anal Calorim. 2016;124(2):865–70.CrossRefGoogle Scholar
  29. 29.
    Liu J, Chen M, Lin X, Yuen R, Wang J. Impacts of ceiling height on the combustion behaviors of pool fires beneath a ceiling. J Therm Anal Calorim. 2016;126(2):881–9.CrossRefGoogle Scholar
  30. 30.
    Zhou Z, Wang J, Liu J, Li H, Yuen R. Effect of the ambient pressure on the heat release rates of n-heptane pool fires. J Therm Anal Calorim. 2016;126(3):1727–34.CrossRefGoogle Scholar
  31. 31.
    Chen M, Yuen R, Wang J. An experimental study about the effect of arrangement on the fire behaviors of lithium-ion batteries. J Therm Anal Calorim. 2017;129(1):181–8.CrossRefGoogle Scholar
  32. 32.
    Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.Google Scholar
  33. 33.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.CrossRefGoogle Scholar
  34. 34.
    Friedman HL. Kinetics of thermal degradation of charforming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science: Polymer Symposia; 1964: Wiley.Google Scholar
  35. 35.
    Xu L, Jiang Y, Wang L. Thermal decomposition of rape straw: pyrolysis modeling and kinetic study via particle swarm optimization. Energy Convers Manag. 2017;146:124–33.CrossRefGoogle Scholar
  36. 36.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis. Thermochim Acta. 2013;552:54–9.CrossRefGoogle Scholar
  37. 37.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Poly Degrad Stab. 2010;95(5):733–9.CrossRefGoogle Scholar
  38. 38.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.CrossRefGoogle Scholar
  39. 39.
    Luche J, Rogaume T, Richard F, Guillaume E. Characterization of thermal properties and analysis of combustion behavior of PMMA in a cone calorimeter. Fire Saf J. 2011;46(7):451–61.CrossRefGoogle Scholar
  40. 40.
    Zhang T, Zhou X, Yang L. Experimental study of fire hazards of thermal-insulation material in diesel locomotive: aluminum-polyurethane. Materials. 2016;9(3):168.CrossRefGoogle Scholar
  41. 41.
    Yang HY, Zhou XD, Yang LZ, Zhang TL. Experimental Studies on the flammability and fire hazards of photovoltaic modules. Materials. 2015;8(7):4210–25.CrossRefGoogle Scholar
  42. 42.
    Janssens ML. Measuring rate of heat release by oxygen consumption. Fire Technol. 1991;27(3):234–49.CrossRefGoogle Scholar
  43. 43.
    Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 1980;4(2):61–5.CrossRefGoogle Scholar
  44. 44.
    GB 50016-2006. Code of design on building fire protection and prevention, Ministry of Construction of China. Beijing: Standards Press; 2006.Google Scholar
  45. 45.
    GB 50074-2002. Code for design of oil depot, Ministry of Construction of China. Standards Press: Beijing; 2002.Google Scholar
  46. 46.
    Petrella RV. The assessment of full-scale fire hazards from cone calorimeter data. J Fire Sci. 1994;12(1):14–43.CrossRefGoogle Scholar
  47. 47.
    Chow W, Han S. Studies on fire behaviour of video compact disc (VCD) materials with a cone calorimeter. Poly Test. 2004;23(6):685–94.CrossRefGoogle Scholar
  48. 48.
    Chow WK. Fire hazard assessment on polyurethane sandwich panels for temporary accommodation units. Poly Test. 2004;23(8):973–7.CrossRefGoogle Scholar
  49. 49.
    Saeed B, Leila TA, Jamali AM. Evaluation of thermal fire hazard of 10 polymeric building materials and proposing a classification method based on cone calorimeter results. Fire Mater. 2015;39(1):1–13.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Ruichao Wei
    • 1
    • 2
  • Yaping He
    • 3
  • Zheng Zhang
    • 1
    • 2
  • Junjiang He
    • 1
    • 2
  • Richard Yuen
    • 2
  • Jian Wang
    • 1
  1. 1.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Department of Civil and Architectural EngineeringCity University of Hong KongHong KongPeople’s Republic of China
  3. 3.School of Computing, Engineering and MathematicsUniversity of Western SydneySydneyAustralia

Personalised recommendations