Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 1, pp 355–361 | Cite as

Obtaining and catalytic properties investigation of the products of double-complex salts [Cr(ur)6][M(L)6] thermal oxidation (M = Co, Fe; L = CN, 1/2C2O 4 2− )

  • Evgeny Yu Filatov
  • Yulya P. Semushina
  • Alevtina N. Gosteva
Article

Abstract

The thermal behavior of double-complex salts [Cr(ur)6][Fe(CN)6]·4H2O (I), [Cr(ur)6][Co(CN)6]·4H2O (II), [Cr(ur)6][Fe(C2O4)3]·2H2O (III), [Cr(ur)6][Co(C2O4)3]·3.5H2O (IV) was studied (ur = urea, H2NCONH2). Thermal decomposition was carried out by the method of static experiments in an oxidizing (air) atmosphere at a 1-h exposure. The products of thermolysis were characterized by the X-ray diffraction method. The porous structure and the specific surface of the samples were determined. For Cr–Co systems at temperatures above 600 °C, the formation of a single-phase spinel of the composition Co1.5Cr1.5O4 was recorded, whereas for the Cr–Fe systems the formation of a mixed oxide phase (Fe,Cr)2O3 occurred with heating up to 900 °C. It was shown that in all cases, as the temperature increased, the specific surface area decreased and the calculated particle size of the oxidation products increased. Thermolysis products were investigated in the model reaction of catalytic oxidation of acetone with air oxygen. The obtained values of the rate constants of the reaction show that the replacement of Fe with Co does not significantly affect the catalytic activity of the products, and only an increase in the temperature of thermolysis leads to a certain decrease in the catalytic activity.

Keywords

Thermal decomposition Double-complex salt Cyanocomplexes Spinel Catalytic oxidation 

Notes

Acknowledgements

This work was supported by U.M.N.I.K. Grant No: 11220GY/2016 and partially by the RFBR Grant 17-03-950-a (E.Yu. Filatov) in the part of samples characterization.

References

  1. 1.
    Mimani T, Ghosh S. Combustion synthesis of cobalt pigments: blue and pink. Curr Sci. 2000;78(7):892–6.Google Scholar
  2. 2.
    Jasaitis D, Beganskienė A, Senvaitienė J, Kareiva A, Ramanauskas R, Juškėnas R, Selskis A. Sol–gel synthesis and characterization of cobalt chromium spinel CoCr2O4. Chemija. 2011;22(2):125–30.Google Scholar
  3. 3.
    Mestre S, Palacios MD, Agut P. Solution combustion synthesis of (Co, Fe)Cr2O4 pigments. J Eur Ceram Soc. 2012;32:1995–9.CrossRefGoogle Scholar
  4. 4.
    Gilabert J, Palacios MD, Sanz V, Mestre S. Characteristics reproducibility of (Fe, Co)(Cr, Al)2O4 pigments obtained by solution combustion synthesis. Ceram Int. 2016;42(11):12880–7.CrossRefGoogle Scholar
  5. 5.
    Darani BA, Aminian KM, Zare H. Synthesis and characterization of two green nanopigments based on chromium oxide. Progr Color Colorants Coat. 2017;10:141–8.Google Scholar
  6. 6.
    Nieves LJJ, Baena OJR, Tobón JI. Synthesis of ceramic pigments ACr2O4 using the non-conventional method of co-precipitation assisted by ultrasound and high energy milling. Open J Inorg Non Met Mater. 2014;4:54–63.Google Scholar
  7. 7.
    Fino D, Solaro S, Russo N, Saracco G, Specchia V. Catalytic removal of methane over thermal-proof nanostructured catalysts for CNG engines. Top Catal. 2007;42–43:449–54.CrossRefGoogle Scholar
  8. 8.
    Edrissi M, Reza Keshavarz A. Synthesis of cobalt chromite nanoparticles by thermolysis of mixed Cr3+ and Co2+ chelates of 2-mercaptopyridin N-oxide. Nano Micro Lett. 2012;4(2):83–9.CrossRefGoogle Scholar
  9. 9.
    Hosseini SA, Alvarez-Galvan MC, Fierro JLG, Niaei A, Salari D. MCr2O4 (M¼Co, Cu, and Zn) nanospinels for 2-propanol combustion: correlation of structural properties with catalytic performance and stability. Ceram Int. 2013;39:9253–61.CrossRefGoogle Scholar
  10. 10.
    Dumitru R, Manea F, Lupa L, Păcurariu C, Ianculescu A, Baciu A, Negrea S. Synthesis, characterization of nanosized CoAl2O4 and its electrocatalytic activity for enhanced sensing application. J Therm Anal Calorim. 2017;128:1305–12.CrossRefGoogle Scholar
  11. 11.
    Wang Y, Jia A-P, Luo M-F, Lu J-Q. Highly active spinel type CoCr2O4 catalysts for dichloromethane oxidation. Appl Catal B Environ. 2015;165:477–86.CrossRefGoogle Scholar
  12. 12.
    Kazemizadeh Z, Bahrami Z, Khodadadi A, Nazari F. Catalytic removal of methane over cobalt chromite (CoCr2O4) nanospinels for CNG vehicles. Int J Nanosci Nanotechnol. 2015;11(4):275–80.Google Scholar
  13. 13.
    Colored stones 8. USA: The Gemological Institute of America. 2004. https://www4.gia.edu/tryelearning/220-08/media/resources/cs08_printable.pdf.
  14. 14.
  15. 15.
    Lawes G, Melot B, Page K, Ederer C, Hayward MA, Proffen T, Seshadri R. Dielectric anomalies and spiral magnetic order in CoCr2O4. Phys Rev B Condens Matter. 2006;74:024413–8.CrossRefGoogle Scholar
  16. 16.
    Dutta DP, Manjanna J, Tyagi AK. Magnetic properties of sonochemically synthesized CoCr2O4 nanoparticles. J Appl Phys. 2009;106:043915–8.CrossRefGoogle Scholar
  17. 17.
    Ibrahim AM, El-Latif MA, Mahmoud MM. Synthesis and characterization of nano-sized cobalt ferrite prepared via polyol method using conventional and microwave heating techniques. J Alloys Compd. 2010;506:201–4.CrossRefGoogle Scholar
  18. 18.
    Singh K, Maignan A, Simon C, Martin C. FeCr2O4 and CoCr2O4 spinels: multiferroicity in the collinear magnetic state? Appl Phys Lett. 2011;99:172903–5.CrossRefGoogle Scholar
  19. 19.
    Polyakova KP, Polyakov VV, Seredkin VA, Patrin GS. Magneto-optical properties of polycrystalline CoCrFeO4 films. Tech Phys Lett. 2011;37(2):109–11.CrossRefGoogle Scholar
  20. 20.
    Tsurkan V, Zherlitsyn S, Yasin S, Felea V, Skourski Y, Deisenhofer J, Krug von Nidda HA, Wosnitza J, Loidl A. Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields. Phys Rev Lett. 2013;110:115502–6.CrossRefGoogle Scholar
  21. 21.
    Ptak M, Maczka M, Hermanowicz K, Pikul A, Hanuza J. Particle size effects on the magnetic and phonon properties of multiferroic CoCr2O4. J Solid State Chem. 2013;199:295–304.CrossRefGoogle Scholar
  22. 22.
    Maczka M, Ptak M, Kurnatowska M, Hanuza J. Synthesis, phonon and optical properties of nanosized CoCr2O4. Mater Chem Phys. 2013;138:682–8.CrossRefGoogle Scholar
  23. 23.
    Torgashev VI, Prokhorov AS, Komandin GA, Zhukova ES, Anzin VB, Talanov VM, Rabkin LM, Bush AA, Dressel M, Gorshunov BP. Magnetic and dielectric response of cobalt-chromium spinel CoCr2O4 in the terahertz frequency range. Phys Solid State. 2012;54(2):350–9.CrossRefGoogle Scholar
  24. 24.
    Litvinenko AK. Genetic position of precious spinel in magnesium skarns of the south-west. Pamirs Proc Russ Miner Soc. 2003;132(1):76–82.Google Scholar
  25. 25.
    Kyono A, Gramsch SA, Yamanaka T, Ikuta D, Ahart M, Mysen BO, Mao H-K, Hemley RJ. The influence of the Jahn–Teller effect at Fe2+ on the structure of chromite at high pressure. Phys Chem Miner. 2012;39:131–40.CrossRefGoogle Scholar
  26. 26.
    Ishii T, Kojitani H, Tsukamoto S, Fujino K, Mori D, Yo Inaguma, Tsujino N, Yoshino T, et al. High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications. Am Miner. 2014;99:8–10.CrossRefGoogle Scholar
  27. 27.
    Durrani SK, Hussain SZ, Saeed K, Khan Y, Arif M, Ahmed N. Hydrothermal synthesis and characterization of nanosized transition metal chromite spinels. Turk J Chem. 2012;36:111–20.Google Scholar
  28. 28.
    Zakutna D, Repko A, Matulkova I, Niznansky D, Ardu A, Cannas C, et al. Hydrothermal synthesis, characterization, and magnetic properties of cobalt chromite nanoparticles. J Nanopart Res. 2014;16:2251–64.CrossRefGoogle Scholar
  29. 29.
    Lei S, Liu L, Wang C, Shen X, Wang C, Guo D, et al. A facile in situ reduction route for preparation of spinel CoCr2O4 polycrystalline nanosheets and their magnetic properties. Cryst Eng Commun. 2014;16:277–86.CrossRefGoogle Scholar
  30. 30.
    Muntean C, Bozdog M, Duma S, Stefanescu M. Study on the formation of Co1−xZnxFe2O4 system using two low-temperature synthesis methods. J Therm Anal Calorim. 2016;123:117–26.CrossRefGoogle Scholar
  31. 31.
    Gingasu D, Mindru I, Culita DC, Patron L, Calderon-Moreno JM, et al. Structural, magnetic and catalytic properties of cobalt chromite obtained through precursor method. Mater Res Bull. 2015;62:52–64.CrossRefGoogle Scholar
  32. 32.
    Gingasu D, Diamandescu L, Mindru I, Marinescu G, Culita DC, Calderon-Moreno JM, et al. Chromium substituted cobalt ferrites by glycine-nitrates process. Croat Chem Acta. 2015;88(4):445–51.CrossRefGoogle Scholar
  33. 33.
    Coutinho DM, Verenkar VMS. Preparation, spectroscopic and thermal analysis of hexa-hydrazine nickel cobalt ferrous succinate precursor and study of solid-state properties of its nanosized thermal product, Ni0.5Co0.5Fe2O4. J Therm Anal Calorim. 2017;128:807–17.CrossRefGoogle Scholar
  34. 34.
    Ivanov VV, Ul’yano AK, Shabelskaya NP. Ferrites-chromites of transition elements: synthesis, structure, properties. Moscow: Academy of Natural History; 2013.Google Scholar
  35. 35.
    Gyergyek S, Makovec D, Kodre A, Arcon I, Jagodic M, Drofenik M. Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles. J Nanopart Res. 2010;12:1263–73.CrossRefGoogle Scholar
  36. 36.
    Kochetygov IV, Filatov EY, Kuratieva NV, Plyusnin PE, Naumov DY, Zadesenets AV, Korenev SV, Tsygankova AR, Logvinenko VA. Crystal structure and thermal properties of K3[Ir(C2O4)3]·4.25H2O and K3[Ir(C2O4)3]·0.5KCl·4H2O. J Therm Anal Calorim. 2016;126:1541–8.CrossRefGoogle Scholar
  37. 37.
    Pechenyuk SI, Gosteva AN. The complexes [Nia(Pn)b]x[Fe(CN)6]y (Pn = 1.3-diaminopropane): synthesis and thermolysis. Russ J Coord Chem. 2014;40(8):547–57.CrossRefGoogle Scholar
  38. 38.
    Ilie I, Patron L, Brezeanu M, Segal E, Filoti G. Synthesis of nickel ferrite from polynuclear coordination compounds. J Mater Sci Lett. 1987;6:932–5.CrossRefGoogle Scholar
  39. 39.
    Hashemi M, Mohandes F, Salavati-Niasari M. Application of [M(en)3]3[Fe(ox)3]2 (M = Zn, Cd, Ni) complexes as new precursor for the synthesis of ferrite micro/nanostructures. Adv Powder Technol. 2016;27(2):388–94.CrossRefGoogle Scholar
  40. 40.
    Travnicek Z, Zboril R, Matikova-Maľarova M, Drahos B, Cernak J. Thermal decomposition of [Co(en)3][Fe(CN)6]·2H2O: topotactic dehydration process, valence and spin exchange mechanism elucidation. Chem Cent J. 2013;7(28):1–18.Google Scholar
  41. 41.
    Asanova T, Asanov I, Zadesenets A, Filatov E, Plyusnin P, Gerasimov E, Korenev S. Study on thermal decomposition of double complex salt [Pd(NH3)4][PtCl6]. J Therm Anal Calorim. 2016;123:1183–95.CrossRefGoogle Scholar
  42. 42.
    Semushina YP, Pechenyuk SI, Ivanov YV, Plyusnin PE, Shubin YV. Thermal decomposition of [Co(NH3)6][Fe(C2O4)3]·3H2O in inert and reductive atmospheres. Russ Chem Bull. 2015;64(8):1963–6.CrossRefGoogle Scholar
  43. 43.
    Chen XY, Ma C, Zhang ZJ, Wang BN. Ultrafine gahnite (ZnAl2O4) nanocrystals: hydrothermal synthesis and photoluminescent properties. Mater Sci Eng B. 2008;151:224–30.CrossRefGoogle Scholar
  44. 44.
    Carp O, Patron L, Reller A. Coordination compounds containing urea as precursors for oxides—a new route of obtaining nanosized CoFe2O4. Mater Chem Phys. 2007;101:142–7.CrossRefGoogle Scholar
  45. 45.
    Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta. 2004;424:131–42.CrossRefGoogle Scholar
  46. 46.
    Brack W, Heine B, Birkhold F, Kruse M, Schoch G, Tischer S, Deutschmann O. Kinetic modeling of urea decomposition based on systematic thermogravimetric analyses of urea and its most important by-products. Chem Eng Sci. 2014;106:1–8.CrossRefGoogle Scholar
  47. 47.
    Jain A, Baranwal RK, Bharti A, Vakil Z, Prajapati CS. Study of Zn–Cu Ferrite Nanoparticles for LPG Sensing. Sci World J. 2013;2013:790359–65.CrossRefGoogle Scholar
  48. 48.
    Pechenyuk SI, Zolotarev AA, Gosteva AN, Domonov DP, Shimkin AA. Crystal structures and thermal behaviour of double complex compounds incorporating the [Cr{CO(NH2)2}6]3+cation. J Mol Struct. 2017;1147:388–96.CrossRefGoogle Scholar
  49. 49.
    ICDD PDF-2 release 2014. Swarthmore: International Centre for Diffraction Data; 2014.Google Scholar
  50. 50.
    Kraus W, Nolzeb G. POWDER CELL—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr. 1996;29:301–3.CrossRefGoogle Scholar
  51. 51.
    Krumm S. An Interactive windows program for profile fitting and size/strain analysis. Mater Sci Forum. 1996;228–231:183–90.Google Scholar
  52. 52.
    Pechenyuk SI, Semushina YP, Kuz’mich lf, Ivanov YV. Acid–base and catalytic properties of the products of oxidative thermolysis of double complex compounds. Russ J Phys Chem A. 2016;90(1):31–6.CrossRefGoogle Scholar
  53. 53.
    Emanuel NM, Knorre DG. Course of chemical kinetics (homogeneous reactions). Moscow: Vyisshaya Shkola; 1969. p. 432.Google Scholar
  54. 54.
    Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2 Part I: low temperature reduction of hematite. Thermochim Acta. 2006;447:89–91.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Evgeny Yu Filatov
    • 1
    • 2
  • Yulya P. Semushina
    • 3
  • Alevtina N. Gosteva
    • 3
  1. 1.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, KSC RASApatityRussia

Personalised recommendations