Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 3, pp 1317–1326 | Cite as

MnCo2O4 nanoparticles with excellent catalytic activity in thermal decomposition of ammonium perchlorate

Green synthesis and kinetic study
  • Nafise Modanlou Juibari
  • Sara Tarighi
Article
  • 95 Downloads

Abstract

MnCo2O4 spinel nanoparticles (NPs) have been prepared using Aloe vera gel solution. The characterization of prepared spinel was performed applying Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron spectroscope, scanning electron microscope and dynamic light scattering. The results manifested that the prepared nanoparticles were mainly spherical plus minor agglomeration with average size distribution between 35 and 60 nm. The catalytic activity of the prepared nanoparticles upon thermal degradation of ammonium perchlorate (AP) was evaluated applying differential scanning calorimetry and thermogravimetry instruments. MnCo2O4 nanoparticles increased the released heat of AP from 450 to 1480 J g−1 and decreased the decomposition temperature from 420 to 293 °C. The kinetic parameters obtained from Kissinger methods showed that the activation energy of AP thermal decomposition in the presence of MnCo2O4 NPs considerably decreased. Also, a mechanism has been proposed in the presence of catalyst for the process of thermal decomposition of AP.

Keywords

Green synthesis MnCo2O4 nanoparticles Ammonium perchlorate DSC Kinetic study 

Notes

Acknowledgements

This work was supported by Iran Polymer and Petrochemical Institute (Grant No. 2042).

References

  1. 1.
    Huang G, Xu S, Xu Z, Sun H, Li L. Core–shell ellipsoidal MnCo2O4 anode with micro-/nano-structure and concentration gradient for lithium-ion batteries. ACS Appl Mater Interfaces. 2014;6(23):21325–34.CrossRefPubMedGoogle Scholar
  2. 2.
    Li J, Wang J, Liang X, Zhang Z, Liu H, Qian Y, et al. Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. ACS Appl Mater Interfaces. 2013;6(1):24–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Gnanam S, Rajendran V. Facile hydrothermal synthesis of alpha manganese sesquioxide (α-Mn2O3) nanodumb-bells: structural, magnetic, optical and photocatalytic properties. J Alloy Compd. 2013;550:463–70.CrossRefGoogle Scholar
  4. 4.
    Chen Z, Jiao Z, Pan D, Li Z, Wu M, Shek C-H, et al. Recent advances in manganese oxide nanocrystals: fabrication, characterization, and microstructure. Chem Rev. 2012;112(7):3833–55.CrossRefPubMedGoogle Scholar
  5. 5.
    Cao X, Wu J, Jin C, Tian J, Strasser P, Yang R. MnCo2O4 anchored on P-doped hierarchical porous carbon as an electrocatalyst for high-performance rechargeable Li–O2 batteries. ACS Catal. 2015;5(8):4890–6.CrossRefGoogle Scholar
  6. 6.
    Wei S-H, Zhang S. First-principles study of cation distribution in eighteen closed-shell AII B2III O4 and AIV B2II O4 spinel oxides. Phys Rev B. 2001;63(4):045112.CrossRefGoogle Scholar
  7. 7.
    Wu X, Wu W, Wang K, Chen W, He D. Synthesis and electrochemical performance of flower-like MnCo2O4 as an anode material for sodium ion batteries. Mater Lett. 2015;147:85–7.CrossRefGoogle Scholar
  8. 8.
    Shimizu Y, Shiotsuka M. Optoelectrochemical hydrogen-phosphate ion sensor based on electrochromism of spinel-type oxide thin-film electrode. Jpn J Appl Phys. 2002;41(10R):6243.CrossRefGoogle Scholar
  9. 9.
    Tholkappiyan R, Naveen AN, Sumithra S, Vishista K. Investigation on spinel MnCo2O4 electrode material prepared via controlled and uncontrolled synthesis route for supercapacitor application. J Mater Sci. 2015;50(17):5833–43.CrossRefGoogle Scholar
  10. 10.
    Shibli S, Arun P, Raj AV. Exploration of octahedrally shaped MnCo2O4 catalyst particles for visible light driven photocatalytic water splitting reaction. RSC Adv. 2015;5(25):19393–9.CrossRefGoogle Scholar
  11. 11.
    Ge X, Liu Y, Goh FT, Hor TA, Zong Y, Xiao P, et al. Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. ACS Appl Mater Interfaces. 2014;6(15):12684–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Sharma AD, Mukhopadhyay J, Basu RN. Synthesis and characterization of nanocrystalline MnCo2O4-δ spinel for protective coating application in SOFC. ECS Trans. 2011;35(1):2509–17.CrossRefGoogle Scholar
  13. 13.
    Wu J, Liu X. Recent development of SOFC metallic interconnect. J Mater Sci Technol. 2010;26(4):293–305.CrossRefGoogle Scholar
  14. 14.
    Jabry E, Rousset A, Lagrange A. Preparation and characterization of manganese and cobalt based semiconducting ceramics. Phase Transit A Multinatl J. 1988;13(1–4):63–71.CrossRefGoogle Scholar
  15. 15.
    Venkatachalam V, Alsalme A, Alghamdi A, Jayavel R. High performance electrochemical capacitor based on MnCo2O4 nanostructured electrode. J Electroanal Chem. 2015;756:94–100.CrossRefGoogle Scholar
  16. 16.
    Velmurugan M, Chen S-M. Synthesis and characterization of porous MnCo2O4 for electrochemical determination of cadmium ions in water samples. Sci Rep. 2017;7(1):653.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Nissinen TA, Kiros Y, Gasik M, Leskelä M. MnCo2O4 preparation by microwave-assisted route synthesis (MARS) and the effect of carbon admixture. Chem Mater. 2003;15(26):4974–9.CrossRefGoogle Scholar
  18. 18.
    Raveendran P, Fu J, Wallen SL. Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc. 2003;125(46):13940–1.CrossRefPubMedGoogle Scholar
  19. 19.
    Sharma J, Srivastava P, Singh G, Akhtar MS, Ameen S. Catalytic thermal decomposition of ammonium perchlorate and combustion of composite solid propellants over green synthesized CuO nanoparticles. Thermochim Acta. 2015;614:110–5.CrossRefGoogle Scholar
  20. 20.
    Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275(2):496–502.CrossRefPubMedGoogle Scholar
  21. 21.
    Ahmad N, Sharma S, Alam MK, Singh V, Shamsi S, Mehta B, et al. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B. 2010;81(1):81–6.CrossRefGoogle Scholar
  22. 22.
    Kasthuri J, Veerapandian S, Rajendiran N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B. 2009;68(1):55–60.CrossRefGoogle Scholar
  23. 23.
    Zayed MF, Eisa WH, Shabaka A. Malva parviflora extract assisted green synthesis of silver nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;98:423–8.CrossRefGoogle Scholar
  24. 24.
    Boldyrev V. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443(1):1–36.CrossRefGoogle Scholar
  25. 25.
    Mallick L, Kumar S, Chowdhury A. Thermal decomposition of ammonium perchlorate—A TGA-FTIR-MS study: Part II. Thermochim Acta. 2017;653:83–96.CrossRefGoogle Scholar
  26. 26.
    Zhou Z, Tian S, Zeng D, Tang G, Xie C. MOX (M = Zn Co, Fe)/AP shell–core nanocomposites for self-catalytical decomposition of ammonium perchlorate. J Alloy Compd. 2012;513:213–9.CrossRefGoogle Scholar
  27. 27.
    Chen L, Li L, Li G. Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Alloy Compd. 2008;464(1):532–6.CrossRefGoogle Scholar
  28. 28.
    Wang Y, Zhu J, Yang X, Lu L, Wang X. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochim Acta. 2005;437(1):106–9.CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Ma M, Zhang X, Wang B, Liu R. Synthesis, characterization, and catalytic property of nanosized MgO flakes with different shapes. J Alloy Compd. 2014;590:373–9.CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Liu X, Nie J, Yu L, Zhong Y, Huang C. Improve the catalytic activity of α-Fe2O3 particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface. J Solid State Chem. 2011;184(2):387–90.CrossRefGoogle Scholar
  31. 31.
    Juibari NM, Eslami A. Investigation of catalytic activity of ZnAl2O4 and ZnMn2O4 nanoparticles in the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2017;128(1):115–24.CrossRefGoogle Scholar
  32. 32.
    Aijun H, Juanjuan L, Mingquan Y, Yan L, Xinhua P. Preparation of nano-MnFe2O4 and its catalytic performance of thermal decomposition of ammonium perchlorate. Chin J Chem Eng. 2011;19(6):1047–51.CrossRefGoogle Scholar
  33. 33.
    Hosseini SG, Abazari R, Gavi A. Pure CuCr2O4 nanoparticles: synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sci. 2014;37:72–9.CrossRefGoogle Scholar
  34. 34.
    Cullity BD, Stock SR. Elements of X-ray diffraction. 3rd ed. Upper Saddle River: Prentice-Hall Inc.; 2001.Google Scholar
  35. 35.
    Rojas RM, Vila E, García O, de Vidales JLM. Thermal behaviour and reactivity of manganese cobaltites Mn × Co3 − xO4 (0.0 ≤ x ≤ 1.0) obtained at low temperature. J Mater Chem. 1994;4(10):1635–9.CrossRefGoogle Scholar
  36. 36.
    Subramanian V, Hall SC, Smith PH, Rambabu B. Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ionics. 2004;175(1):511–5.CrossRefGoogle Scholar
  37. 37.
    Padmanathan N, Selladurai S. Mesoporous MnCo2O4 spinel oxide nanostructure synthesized by solvothermal technique for supercapacitor. Ionics. 2014;20(4):479–87.CrossRefGoogle Scholar
  38. 38.
    Zhao Y, Hu L, Zhao S, Wu L. Preparation of MnCo2O4@ Ni (OH)2 core–shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv Func Mater. 2016;26(23):4085–93.CrossRefGoogle Scholar
  39. 39.
    Eslami A, Juibari NM, Hosseini SG. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate. Mater Chem Phys. 2016;181:12–20.CrossRefGoogle Scholar
  40. 40.
    Juibari NM, Eslami A. Green synthesis of ZnCo2O4 nanoparticles by Aloe albiflora extract and its application as catalyst on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2017;130(3):1327–33.CrossRefGoogle Scholar
  41. 41.
    Wang J, Zhang W, Zheng Z, Gao Y, Ma K, Ye J, et al. Enhanced thermal decomposition properties of ammonium perchlorate through addition of 3DOM core-shell Fe2O3/Co3O4 composite. J Alloy Compd. 2017;724:720–7.CrossRefGoogle Scholar
  42. 42.
    Chaturvedi S, Dave PN. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc. 2013;17(2):135–49.CrossRefGoogle Scholar
  43. 43.
    Said A. The role of copper-chromium oxide catalysts in the thermal decomposition of ammonium perchlorate. J Therm Anal. 1991;37(5):959–67.CrossRefGoogle Scholar
  44. 44.
    Eslami A, Juibari NM, Hosseini SG, Abbasi M. Synthesis and characterization of CuO nanoparticles by the chemical liquid deposition method and investigation of its catalytic effect on the thermal decomposition of ammonium perchlorate. Cent Eur J Energ Mater. 2017;14(1):152–68.CrossRefGoogle Scholar
  45. 45.
    Li N, Geng Z, Cao M, Ren L, Zhao X, Liu B, et al. Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon. 2013;54:124–32.CrossRefGoogle Scholar
  46. 46.
    Sanoop A, Rajeev R, George BK. Synthesis and characterization of a novel copper chromite catalyst for the thermal decomposition of ammonium perchlorate. Thermochim Acta. 2015;606:34–40.CrossRefGoogle Scholar
  47. 47.
    Rosso L, Tuckerman ME. Direct evidence of an anomalous charge transport mechanism in ammonium perchlorate crystal in an ammonia-rich atmosphere from first-principles molecular dynamics. Solid State Ionics. 2003;161(3):219–29.CrossRefGoogle Scholar
  48. 48.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–19.CrossRefGoogle Scholar
  49. 49.
    Criado J, Pérez-Maqueda L, Sánchez-Jiménez P. Dependence of the preexponential factor on temperature: errors in the activation energies calculated by assuming that A is constant. J Therm Anal Calorim. 2005;82(3):671–5.CrossRefGoogle Scholar
  50. 50.
    Morisaki S, Komamiya K. Differential thermal analysis and thermogravimetry of ammonium perchlorate at pressures up to 51 ATM. Thermochim Acta. 1975;12(3):239–51.CrossRefGoogle Scholar
  51. 51.
    Patil PR, Krishnamurthy VN, Joshi SS. Effect of nano-copper oxide and copper chromite on the thermal decomposition of ammonium perchlorate. Propellants, Explos, Pyrotech. 2008;33(4):266–70.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations