Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 3, pp 1353–1364 | Cite as

Effect of acid-treated multi-walled carbon nanotubes on thermo-oxidative stability and degradation behavior of silicone rubber

  • Zhongxiao Li
  • Zhe Wang
  • Xingna Qiu
  • Lu Bai
  • Junping Zheng
Article
  • 54 Downloads

Abstract

The effect of acid-treated multi-walled carbon nanotubes (MWCNTs) on thermo-oxidative stability and degradation behavior of silicone rubber (SR) was evaluated. Raman microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric (TG) analysis were performed to characterize the surface states of MWCNTs samples. The results demonstrated that after acid treatment the nanodefects and surface oxygen-containing groups (mainly hydroxyl and carboxyl groups) were formed and the number of them was gradually increased by increasing the treatment time. Then these MWCNTs were embedded into SR matrix. Furthermore, the thermo-oxidative stability and degradation behavior of MWCNTs/SR composites were studied using thermogravimetric/infrared spectrometry (TG-IR). Thermo-oxidative stability test in air revealed that the degradation of SR, at relatively low temperature, was mainly due to the oxidation of Si-CH3 side groups and the generation of free radicals. This behavior was hindered by the MWCNTs’ surface nanodefects and hydroxyl groups, as proved by TG-IR study which revealed that the amount of carbonyl compounds was reduced more than 60%, compared with that of neat SR. Therefore, acid treatment led a better thermo-oxidative stability of MWCNTs/SR. For 4hAT-MWCNTs/SR, with maximum hydroxyl groups on MWCNTs surface, the Ti (defined as the temperature for 5% mass loss) of it is increased by 34.8 °C compared to that of neat SR, and even increased by 18.5 °C compared with that of raw-MWCNTs/SR.

Keywords

Silicone rubber Thermo-oxidative stability Multi-walled carbon nanotubes Acid treatment Oxygen-containing groups 

Notes

Acknowledgements

The authors wish to thank the National Natural Science Foundation of China (Grant No. 51273143) for supporting this research.

References

  1. 1.
    Shit SC, Shah P. A review on silicone rubber. Natl Acad Sci Lett. 2013;36:355–65.CrossRefGoogle Scholar
  2. 2.
    Chen J, Ding N, Li Z, Wang W. Organic polymer materials in the space environment. Prog Aerosp Sci. 2016;83:37–56.CrossRefGoogle Scholar
  3. 3.
    Fang S, Hu Y, Song L, Zhan J, He Q. Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. J Mater Sci. 2007;43:1057–62.CrossRefGoogle Scholar
  4. 4.
    Hanu LG, Simon GP, Cheng YB. Thermal stability and flammability of silicone polymer composites. Polym Degrad Stab. 2006;91:1373–9.CrossRefGoogle Scholar
  5. 5.
    Genovese A, Shanks RA. Fire performance of poly(dimethyl siloxane) composites evaluated by cone calorimetry. Compos Part A: Appl Sci Manufac. 2008;39:398–405.CrossRefGoogle Scholar
  6. 6.
    Chen C, Jia Z, Ye W, Guan Z, Li Y. Thermo-oxidative aging analysis of HTV silicone rubber used for outdoor insulation. IEEE Trans Dielectr Electr Insul. 2017;24:1761–72.CrossRefGoogle Scholar
  7. 7.
    Camino G, Lomakin SM, Lazzari M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer. 2001;42:2395–402.CrossRefGoogle Scholar
  8. 8.
    Bai L, Zheng J. Synergistic effect of iron oxide modified carbon nanotubes on the thermal stability of silicone rubber under different atmospheres. J Therm Anal Calorim. 2015;123:1281–91.CrossRefGoogle Scholar
  9. 9.
    Camino G, Lomakin SM, Lageard M. Thermal polydimethylsiloxane degradation Part 2. The degradation mechanisms. Polymer. 2002;43:2011–5.CrossRefGoogle Scholar
  10. 10.
    Grassie N, Macfarlane IG. The thermal degradation of polysiloxanes-I Poly(dimethylsiloxane). Eur Polym J. 1978;14:875–84.CrossRefGoogle Scholar
  11. 11.
    Hamdani S, Longuet C, Perrin D, Lopez-cuesta J-M, Ganachaud F. Flame retardancy of silicone-based materials. Polym Degrad Stab. 2009;94:465–95.CrossRefGoogle Scholar
  12. 12.
    Anyszka R, Bieliński DM, Pędzich Z, Szumera M. Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites. J Therm Anal Calorim. 2014;119:111–21.CrossRefGoogle Scholar
  13. 13.
    Xie C, Zeng X, Fang W, Lai X, Li H. Effect of alkyl-disubstituted ureido silanes with different alkyl chain structures on tracking resistance property of addition-cure liquid silicone rubber. Polym Degrad Stab. 2017;142:263–72.CrossRefGoogle Scholar
  14. 14.
    Liu YR, Huang YD, Liu L. Influences of monosilanolisobutyl-poss on thermal stability of polymethylsilxoane. J Mater Sci. 2007;42:5544–50.CrossRefGoogle Scholar
  15. 15.
    Gu J, Meng X, Tang Y, Li Y, Zhuang Q, Kong J. Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Compos Part A: Appl Sci Manufac. 2017;92:27–32.CrossRefGoogle Scholar
  16. 16.
    Chen X, Li M, Zhuo J, Ma C, Jiao C. Influence of Fe2O3 on smoke suppression and thermal degradation properties in intumescent flame-retardant silicone rubber. J Therm Anal Calorim. 2015;123:439–48.CrossRefGoogle Scholar
  17. 17.
    Rybiński P, Żukowski W, Bradło D. Influence of cenosphere particles on thermal properties composites of silicon rubber. J Therm Anal Calorim. 2015;122:1307–18.CrossRefGoogle Scholar
  18. 18.
    Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.CrossRefGoogle Scholar
  19. 19.
    Ciecierska E, Boczkowska A, Kubiś M, Chabera P, Wiśniewski T. Effect of styrene addition on thermal properties of epoxy resin doped with carbon nanotubes. Polym Adv Technol. 2015;26:1593–9.CrossRefGoogle Scholar
  20. 20.
    Ou Y, Tsen W-C, Gong C, Wang J, Liu H, Zheng G, et al. Chitosan-based composite membranes containing chitosan-coated carbon nanotubes for polymer electrolyte membranes. Polym Adv Technol. 2017.  https://doi.org/10.1002/pat.4171.Google Scholar
  21. 21.
    Li Y, Li M, Pang M, Feng S, Zhang J, Zhang C. Effects of multi-walled carbon nanotube structures on the electrical and mechanical properties of silicone rubber filled with multi-walled carbon nanotubes. J Mater Chem C. 2015;3:5573–9.CrossRefGoogle Scholar
  22. 22.
    Xie H, Ye Q, Si J, Yang W, Lu H, Zhang Q. Synthesis of a carbon nanotubes/ZnAl-layered double hydroxide composite as a novel flame retardant for flexible polyurethane foams. Polym Adv Technol. 2016;27:651–6.CrossRefGoogle Scholar
  23. 23.
    da Silva WM, Ribeiro H, Neves JC, Sousa AR, Silva GG. Improved impact strength of epoxy by the addition of functionalized multiwalled carbon nanotubes and reactive diluent. J Appl Polym Sci. 2015;132:42587–99.CrossRefGoogle Scholar
  24. 24.
    Kang J, He J, Chen Z, Yang F, Chen J, Cao Y, et al. Effects of β-nucleating agent and crystallization conditions on the crystallization behavior and polymorphic composition of isotactic polypropylene/multi-walled carbon nanotubes composites. Polym Adv Technol. 2015;26:32–40.CrossRefGoogle Scholar
  25. 25.
    Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, et al. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon. 2012;50:3–33.CrossRefGoogle Scholar
  26. 26.
    Zhao Z, Yang Z, Hu Y, Li J, Fan X. Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci. 2013;276:476–81.CrossRefGoogle Scholar
  27. 27.
    Shi X, Jiang B, Wang J, Yang Y. Influence of wall number and surface functionalization of carbon nanotubes on their antioxidant behavior in high density polyethylene. Carbon. 2012;50:1005–13.CrossRefGoogle Scholar
  28. 28.
    Bikiaris D, Vassiliou A, Chrissafis K, Paraskevopoulos KM, Jannakoudakis A, Docoslis A. Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym Degrad Stab. 2008;93(5):952–67.CrossRefGoogle Scholar
  29. 29.
    Zhou W, Sasaki S, Kawasaki A. Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment. Carbon. 2014;78:121–9.CrossRefGoogle Scholar
  30. 30.
    Sun Y, Wang R, Liu X, Li M, Yang H, Li B. Improvements in the thermal conductivity and mechanical properties of phase-change microcapsules with oxygen-plasma-modified multiwalled carbon nanotubes. J Appl Polym Sci. 2017;134:54269–79.Google Scholar
  31. 31.
    Rebelo SL, Guedes A, Szefczyk ME, Pereira AM, Araujo JP, Freire C. Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: unraveling disorder in graphitic materials. Phys Chem Chem Phys. 2016;18:12784–96.CrossRefGoogle Scholar
  32. 32.
    Skubiszewska-Zięba J, Charmas B, Kołtowski M, Oleszczuk P. Active carbons from waste biochars. J Therm Anal Calorim. 2017;130:15–24.CrossRefGoogle Scholar
  33. 33.
    Ferreira FV, Franceschi W, Menezes BRC, Brito FS, Lozano K, Coutinho AR, et al. Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites. Appl Surf Sci. 2017;410:267–77.CrossRefGoogle Scholar
  34. 34.
    Liu X, Wu W, Qi Y, Qu H, Xu J. Synthesis of a hybrid zinc hydroxystannate/reduction graphene oxide as a flame retardant and smoke suppressant of epoxy resin. J Therm Anal Calorim. 2016;126:553–9.CrossRefGoogle Scholar
  35. 35.
    Zhang Z, Chen H, Xing C, Guo M, Xu F, Wang X, et al. Sodium citrate: a universal reducing agent for reduction/decoration of graphene oxide with au nanoparticles. Nano Res. 2011;4:599–611.CrossRefGoogle Scholar
  36. 36.
    Li N, Liu H, Zhang X. Functionalized multiwalled carbon nanotubes in mild polyphosphoric acid/phosphorous pentoxide/phosphoric acid and their composites with epoxy resin. Polym Compos. 2014;35:1275–84.CrossRefGoogle Scholar
  37. 37.
    Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, et al. Chemical oxidation of multiwalled carbon nanotubes. Carbon. 2008;46:833–40.CrossRefGoogle Scholar
  38. 38.
    Jiang M-J, Dang Z-M, Yao S-H, Bai J. Effects of surface modification of carbon nanotubes on the microstructure and electrical properties of carbon nanotubes/rubber nanocomposites. Chem Phys Lett. 2008;457:352–6.CrossRefGoogle Scholar
  39. 39.
    Arrigo R, Dintcheva NT, Guenzi M, Gambarotti C. Nano-hybrids based on quercetin and carbon nanotubes with excellent anti-oxidant activity. Mater Lett. 2016;180:7–10.CrossRefGoogle Scholar
  40. 40.
    Katihabwa A, Wencai W, Yi J, Xiuying Z, Yonglai L, Liqun Z. Multi-walled carbon nanotubes/silicone rubber nanocomposites prepared by high shear mechanical mixing. J Reinf Plast Compos. 2011;30:1007–14.CrossRefGoogle Scholar
  41. 41.
    Qiu X, Cai H, Fang X, Zheng J. The improved thermal oxidative stability of silicone rubber by incorporating reduced graphene oxide: impact factors and action mechanism. Polym Compos. 2016.  https://doi.org/10.1002/pc.24039.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Zhongxiao Li
    • 1
  • Zhe Wang
    • 1
  • Xingna Qiu
    • 1
  • Lu Bai
    • 1
  • Junping Zheng
    • 1
  1. 1.Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations