Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 3, pp 1371–1378 | Cite as

Separation and kinetic analysis of the thermo-oxidative reactions of polyacrylonitrile upon heat treatment

  • Balázs Szepcsik
  • Béla Pukánszky


A polyacrylonitrile (PAN) homopolymer and a copolymer with methyl acrylate were analyzed by differential scanning calorimetry (DSC) in order to establish a method for the kinetic analysis of the stabilization reaction steps during heat treatment. The application of a program rarely used for the study of the chemical transformation of PAN and its copolymers resulted in five separate steps, which can be assigned with large probability to various cyclization and oxidation reactions. A more exact identification of the reactions needs further measurements and considerations. Overlapping peaks appearing in the DSC traces were deconvoluted and then quantitatively analyzed to obtain kinetic parameters. The kinetics of the processes were described by the Kissinger model. The model could be fitted well to four of the five processes that may indicate that these belong to individual reactions of the first order. The parameters obtained agree well with the few values of similar investigations published in the literature up to now. The results have large practical relevance, since the kinetic parameters obtained can be used in the preparation of intermediates and for the optimization of the stabilization process.


Polyacrylonitrile Thermal stabilization Cyclization DSC Deconvolution Reaction kinetics Kissinger analysis 



The National Research Fund of Hungary (OTKA K 120039) is greatly appreciated for the financial support of the research. The authors would like to thank Michael M. Coleman and the journal Carbon for the permission to reuse Fig. 6 published in [35].


  1. 1.
    Bashir Z. A critical review of the stabilisation of polyacrylonitrile. Carbon. 1991;29:1081–90.CrossRefGoogle Scholar
  2. 2.
    Huang X. Fabrication and properties of carbon fibers. Materials. 2009;2:2369–403.CrossRefGoogle Scholar
  3. 3.
    Liu Y, Kumar S. Recent progress in fabrication, structure, and properties of carbon fibers. Polym Rev. 2012;52:234–58.CrossRefGoogle Scholar
  4. 4.
    Popovska N, Mladenov I. Untersuchungen zur Herstellung von Kohlenstoffasern auf der Basis von mit Wasserstoffperoxid modifizierten PAN-Fasern. Carbon. 1983;21:33–8.CrossRefGoogle Scholar
  5. 5.
    Bahl OP, Mathur RB, Dhami TL. Modification of polyacrylonitrile fibres to make them suitable for conversion into high performance carbon fibres. Mater Sci Eng. 1985;73:105–12.CrossRefGoogle Scholar
  6. 6.
    Mathur RB, Bahl OP, Matta VK, Nagpal KC. Modification of PAN precursor—its influence on the reaction kinetics. Carbon. 1988;26:295–301.CrossRefGoogle Scholar
  7. 7.
    Bajaj P, Sreekumar TV, Sen K. Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers. Polymer. 2001;42:1707–18.CrossRefGoogle Scholar
  8. 8.
    Hajir Bahrami S, Bajaj P, Sen K. Thermal behaviour of acrylonitrile carboxylic acid copolymers. J Appl Polym Sci. 2003;88:685–98.CrossRefGoogle Scholar
  9. 9.
    Ouyang Q, Cheng L, Wang H, Li K. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stab. 2008;93:1415–21.CrossRefGoogle Scholar
  10. 10.
    Liu Y, Chae HG, Kumar S. Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part II: stabilization reaction kinetics and effect of gas environment. Carbon. 2011;49:4477–86.CrossRefGoogle Scholar
  11. 11.
    Zhang L, Dai Y, Kai Y, Jin R. Structural evolution and kinetic study of high isotacticity poly(acrylonitrile) during isothermal pre-oxidation. Carbon Lett. 2011;12:229–35.CrossRefGoogle Scholar
  12. 12.
    Rwei S, Way T, Hsu Y. Kinetics of cyclization reaction in poly(acrylonitrile-methyl acrylate-dimethyl itaconate) copolymer determined by a thermal analysis. Polym Degrad Stab. 2013;98:2072–80.CrossRefGoogle Scholar
  13. 13.
    Xue Y, Liu J, Liang J. Kinetic study of the dehydrogenation reaction in polyacrylonitrile-based carbon fiber precursors during thermal stabilization. J Appl Polym Sci. 2013;127:237–45.CrossRefGoogle Scholar
  14. 14.
    Ju A, Luo M, Zhang K, Ge M. Mechanism and kinetics of stabilization reactions of poly(acrylonitrile-co-3-aminocarbonyl-3-butenoic acid methyl ester). J Therm Anal Calorim. 2014;117:205–15.CrossRefGoogle Scholar
  15. 15.
    Khayyam H, Naebe M, Zabihi O, Zamani R, Atkiss S, Fox B. Dynamic prediction models and optimization of polyacrylonitrile (PAN) stabilization processes for production of carbon fiber. IEEE Trans Ind Inform. 2015;11:887–96.CrossRefGoogle Scholar
  16. 16.
    Fu Z, Ma J, Deng Y, Wu G, Cao C, Zhang H. Structural evolution of poly(acrylonitrile-co-dimethyl itaconate) copolymer during thermal oxidative stabilization. Polym Adv Technol. 2015;26:322–9.CrossRefGoogle Scholar
  17. 17.
    Fitzer E, Müller DJ. The influence of oxygen on the chemical reactions during stabilization of PAN as carbon fiber precursor. Carbon. 1975;13:63–9.CrossRefGoogle Scholar
  18. 18.
    Peebles LH Jr, Peyser P, Snow AW, Peters WC. On the exotherm of polyacrylonitrile: pyrolysis of the homopolymer under inert conditions. Carbon. 1990;28:707–15.CrossRefGoogle Scholar
  19. 19.
    Kim J, Kim YC, Ahn W, Kim CY. Reaction mechanisms of polyacrylonitrile on thermal treatment. Polym Eng Sci. 1993;33:1452–7.CrossRefGoogle Scholar
  20. 20.
    Kakida H, Tashiro K, Kobayashi M. Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers I. Polym J. 1996;28:30–4.CrossRefGoogle Scholar
  21. 21.
    Kakida H, Tashiro K, Kobayashi M. Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers II. Polym J. 1997;29:353–7.CrossRefGoogle Scholar
  22. 22.
    Kakida H, Tashiro K, Kobayashi M. Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers III. Polym J. 1997;29:557–62.CrossRefGoogle Scholar
  23. 23.
    Devasia R, Reghunadhan Nair CP, Sivadasan P, Katherine BK, Ninan KN. Cyclization reaction in poly(acrylonitrile/itaconic acid) copolymer: an isothermal differential scanning calorimetry kinetic study. J Appl Polym Sci. 2003;88:915–20.CrossRefGoogle Scholar
  24. 24.
    Belyaev SS, Arkhangelsky IV, Makarenko IV. Non-isothermal kinetic analysis of oxidative stabilization processes in PAN fibers. Thermochim Acta. 2010;508:9–14.CrossRefGoogle Scholar
  25. 25.
    Xue Y, Liu J, Liang J. Correlative study of critical reactions in polyacrylonitrile based carbon fiber precursors during thermal-oxidative stabilization. Polym Degrad Stab. 2013;98:219–29.CrossRefGoogle Scholar
  26. 26.
    Fu Z, Gui Y, Liu S, Wang Z, Liu B, Cao C. Effects of an itaconic acid comonomer on the structural evolution and thermal behaviors of polyacrylonitrile used for polyacrylonitrile-based carbon fibers. J Appl Polym Sci. 2014;131:40834.Google Scholar
  27. 27.
    Zhang H, Quan L, Xu L. The effects of carbon nanotubes with acid-groups on the structural evolution and cyclization kinetics of poly(acrylonitrile-co-itaconic acid) composite microspheres. Fiber Polym. 2015;16:263–70.CrossRefGoogle Scholar
  28. 28.
    Liu HC, Chien A, Newcomb BA, Davijani AAB, Kumar S. Stabilization kinetics of gel spun polyacrylonitrile/lignin blend fiber. Carbon. 2016;101:382–9.CrossRefGoogle Scholar
  29. 29.
    Dunham MG, Edie DD. Model of stabilization for PAN-based carbon fiber precursor bundles. Carbon. 1992;30:435–50.CrossRefGoogle Scholar
  30. 30.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Themochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  31. 31.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy by thermogravimetric data. Polym Lett. 1966;4:323–8.CrossRefGoogle Scholar
  32. 32.
    Ozawa T. A new method for analyzing thermogravimetric data. B Chem Soc Jpn. 1965;38:1881.CrossRefGoogle Scholar
  33. 33.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  34. 34.
    Blaine RL, Kissinger HE. Homer Kissinger and the Kissinger equation. Themochim Acta. 2012;540:1–6.CrossRefGoogle Scholar
  35. 35.
    Sivy GT, Gordon B, Coleman MM. Studies of the degradation of copolymers of acrylonitrile and acrylamide in air at 200 °C. Speculations on the role of the preoxidation step in carbon fiber formation. Carbon. 1983;21:573–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials ScienceBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Institute of Materials and Environmental Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary

Personalised recommendations