Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 3, pp 1455–1462 | Cite as

New thermal study of polymerization and degradation kinetics of methylene diphenyl diisocyanate

  • José Eduardo Estevam da Silva
  • Rafael Turra Alarcon
  • Caroline Gaglieri
  • Aroldo Geraldo Magdalena
  • Luiz Carlos da Silva-Filho
  • Gilbert Bannach
Article
  • 118 Downloads

Abstract

This work investigates the thermal polymerization process of a methylene diphenyl diisocyanate (MDI) monomer as well as its thermal degradation following the ICTAC recommendations. MDI monomer is widely used as a synthetic resin in the production of MDF panels, as it provides compaction of the eucalyptus fibers by polymerization. Thermogravimetry/derivative thermogravimetric-differential thermal analysis (TG/DTG-DTA), differential scanning calorimetry, and mid-infrared spectroscopy were used in this study. The polymerization process (An) and degradation (Fn) process exhibited activation energy equal to 149.70 and 80.22 kJ mol−1, respectively. The combined the FTIR and kinetic information makes it possible to suggest the mechanism reaction, which is an inedited data in literature.

Keywords

Polymerization Degradation Methylene diphenyl diisocyanate Non-isothermal kinetics Thermal studies 

Notes

Acknowledgements

The authors wish to thank CAPES (proc. 024/2012 Pro-equipment), POSMAT/UNESP) and FAPESP (processes: 2013/09022-7 and 2017/08820-8), CNPq (Processes 302267/2015-8 and 302753/2015-0) for financial support, as well as Netzsch-Brazil for providing kinetic computational program (Netzsch kinetics Neo Trial).

Supplementary material

10973_2018_7211_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)
10973_2018_7211_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 20 kb)

References

  1. 1.
    Product Safety Assessment. DOW Modified Methyl Diphenyl Diisocyanate (MDI) Products 2015;1–8.Google Scholar
  2. 2.
    Hagerman L, Law B, Bledsoe T, Hettick J, Kashon M, Lemons A, Wisnewski A, Siegel P. The influence of diisocyanate antigen preparation methodology on monoclonal and serum antibody recognition. J Occup Environ Hygiene. 2016;13:829–39.CrossRefGoogle Scholar
  3. 3.
    Fug F, Rohe K, Vargas J, Nies C, Springborg M, Possart W. 4,4′-methylene diphenyl diisocyanate–conformational space, normal vibrations and infrared spectra. Polymer. 2016;99:671–83.CrossRefGoogle Scholar
  4. 4.
    Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally. stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.CrossRefGoogle Scholar
  5. 5.
    Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advanced isoconversional methods Complex mechanisms and isothermal predicted conversion–time curves. Chemom Intell Lab Syst. 2009;96:219–26.CrossRefGoogle Scholar
  6. 6.
    Vyazovkin S, Vincent L, Sbirrazzuoli N. Thermal denaturation of collagen analyzed by isoconversional method. Macromol Biosci. 2007;7:1181–6.CrossRefGoogle Scholar
  7. 7.
    Jablonskli AE, Lang AJ, Vyazovkin S. Isoconversional kinetics of degradation of polyvinylpyrrolidone used as a matrix for ammonium nitrate stabilization. Thermochim Acta. 2008;474:78–80.CrossRefGoogle Scholar
  8. 8.
    Peterson JD, Vyazovkin S, Wight CA. Kinetic study of stabilizing effect of oxygen on thermal degradation of poly(methylmethacrylate). J Phys Chem B. 1999;103:8087–92.CrossRefGoogle Scholar
  9. 9.
    Arisawa H, Brill TB. Kinetics and mechanisms of flash pyrolysis of poly(methyl methacrylate) (PMMA). Combust Flame. 1997;109:415–26.CrossRefGoogle Scholar
  10. 10.
    Arii T, Ichihara S, Nakagawa H, Fujii N. A kinetic study of the thermal decomposition of polyesters by controlled-rate thermogravimetry. Termochim Acta. 1998;319:139–49.CrossRefGoogle Scholar
  11. 11.
    Zhang Q, Li H, Liu H. Study on polymerization kinetics of methylene diphenyl diisocyanate. Acta Chim Sinica. 2011;69:605–9.Google Scholar
  12. 12.
    Zhang J, Tang Y, Liu J, Chen Y. Thermal stability and thermal degradation reaction kinetics of 4,4′-Diphenylmethane diisocyanatetrimer. Asian J Chem. 2014;26:1527–9.Google Scholar
  13. 13.
    Vyadzovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochin Acta. 2011;520:1–19.CrossRefGoogle Scholar
  14. 14.
    Netzsch—Thermokinetics. https://kinetics.netzsch.com/en/. Acessed 09 Sep 2017.
  15. 15.
    Opfermann J. Kinetic analysis using a multivariate nonlinear regression. J Therm Anal Calorim. 2000;60:641–58.CrossRefGoogle Scholar
  16. 16.
    American Society for Testing and Materials—ASTM. ASTM-E1356: Standard test method for assignment of the glass transition temperatures by differential scanning calorimetry. West Conshohocken: ASTM; 2014.Google Scholar
  17. 17.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.CrossRefGoogle Scholar
  18. 18.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  19. 19.
    Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109(1203–121):4.Google Scholar
  20. 20.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. 1964; 183–195.Google Scholar
  21. 21.
    Pielichowski K, Czub P, Pielichowski J. The kinetics of cure of epoxides and related sulphur compounds study by dynamic DSC. Polymer. 2000;41:4381–8.CrossRefGoogle Scholar
  22. 22.
    Peterson JD, Vyadzovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.CrossRefGoogle Scholar
  23. 23.
    Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry. 6th ed. Harlow: Pearson Education Limited; 2010.Google Scholar
  24. 24.
    Monagle JJ. Carbodiimides III: conversion of isocyanates to carbodiimides catalyst studies. J Organ Chem. 1962;27:3851–5.CrossRefGoogle Scholar
  25. 25.
    Puszka A, Kultys A. New thermoplastic polyurethane elastomer based on aliphatic diisocyanate. J Therm Anal Calorim. 2017;128:407–16.CrossRefGoogle Scholar
  26. 26.
    Kong W, Lei Y, Jiang Y, Lei J. Preparation and thermal performance of polyurethane/PEG as novel form-stable phase change materials for thermal energy storage. J Therm Anal Calorim. 2017;130:1011–9.CrossRefGoogle Scholar
  27. 27.
    American Society for Testing and Materials—ASTM. ASTM-E1641: Standard test method for decomposition kinetics by thermogravimetry. West Conshohocken: ASTM; 1999.Google Scholar
  28. 28.
    American Society for Testing and Materials—ASTM. ASTM-E1877: Standard practice for calculating thermal endurance of materials from thermogravimetric decomposition data. West Conshohocken: ASTM; 1999.Google Scholar
  29. 29.
    National Institute of Standards and Technology—NIST. IR Spectrum methylene diphenyl diisocyanate. Webbook NIST; 2009.Google Scholar
  30. 30.
    Silverstein RM, Webster FX, Kiemle DJ, editors. Spectrometric Identification of organic compounds. 7th ed. Wiley, 2005.Google Scholar
  31. 31.
    Hatchett DW, Kodipilli G, Kinianjui JM, Benincasa F, Sapochak L. FTIR Analysis of thermally processed PU foam. Polym Degrad Stab. 2005;87:555–61.CrossRefGoogle Scholar
  32. 32.
    Duff DW, Maciel GE. Monitoring the thermal degradation of a isocyanurate-rich MDI-based resin by 15N and 13C CP/MAS NMR. Macromol. 1991;24:651–8.CrossRefGoogle Scholar
  33. 33.
    Brown TE, LeMay HE, Bursten BE. Murphy C, Woodward P.Chemistry: the central science. 9th ed. Boston: Pearson, 2005.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • José Eduardo Estevam da Silva
    • 1
  • Rafael Turra Alarcon
    • 1
  • Caroline Gaglieri
    • 1
  • Aroldo Geraldo Magdalena
    • 1
  • Luiz Carlos da Silva-Filho
    • 1
  • Gilbert Bannach
    • 1
  1. 1.Chemistry Department, School of SciencesSão Paulo State University (UNESP)BauruBrazil

Personalised recommendations