Skip to main content
Log in

Thermally stimulated luminescence of a natural layered double hydroxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Layered double hydroxides (LDHs) and many of the related hydrotalcite-like minerals have been well studied from the chemical and structural point of view; however, their luminescence properties have been scarcely studied. We herein report on the thermoluminescence (TL) behaviour of a natural LDH (Mg6Cr2CO3(OH)16·4H2O), previously characterized by X-ray fluorescence, X-ray energy-dispersive spectrometry, electron probe microanalysis, thermogravimetry and differential thermal analysis, that exhibited a very complex green-IR spectral emission. The broad waveband peaked at ~ 640 nm can be mainly linked to the 4T1 → 6A1 (at 570 nm), 4A2g → 2Eg (~ 685 nm), 4T1 → 6A1 (~ 700 nm), and 1T2g → 3A2g (green) and 1T2g → 3T2g (red) transitions due, respectively, to the presence of Mn2+, Cr3+, Fe2+ and Ni2+. The weak red-TL emission can likely be attributed to the quenching effect due to Fe (~ 8–11%) ions substituting for Mg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bailiff IK, Correcher V, Delgado A, Goksu Y, Hubner S. Luminescence characteristics of dental ceramics for retrospective dosimetry: a preliminary study. Radiat Prot Dosim. 2002;101:519–24.

    Article  CAS  Google Scholar 

  2. Bailiff IK, Stepanenko VF, Goksu HY, Botter-Jensen L, Brodsky L, Chumak V, Correcher V, Delgado A, Golikov V, Jungner H, Khamidova LG, Kolizshenkov TV, Likhtarev I, Meckbach R, Petrov SA, Sholom S. Comparison of retrospective luminescence dosimetry with computational modelling in two highly contaminated settlements downwind of the Chernobyl NPP. Health Phys. 2004. https://doi.org/10.1097/00004032-200401000-00006.

    Article  PubMed  Google Scholar 

  3. Beneitez P, Correcher V, Millan A, Calderon T. Thermoluminescence analysis for testing the irradiation of spices. J Radioanal Nucl Chem. 1994. https://doi.org/10.1007/BF02041311.

    Article  Google Scholar 

  4. Rodriguez-Lazcano Y, Correcher V, Garcia-Guinea J. Luminescence emission of natural NaCl. Radiat Phys Chem. 2012. https://doi.org/10.1016/j.radphyschem.2011.07.012.

    Article  Google Scholar 

  5. McKeever SWS. Thermoluminescence of solids. New York: Cambridge University Press; 1985.

    Book  Google Scholar 

  6. Correcher V, Gomez-Ros JM, Garcia-Guinea J. Radiation effect on the 400-nm-thermoluminescence emission of a potassium rich feldspar. Radiat Meas. 2004. https://doi.org/10.1016/j.radmeas.2003.12.006.

    Article  Google Scholar 

  7. Spratt HJ, Palmer SJ, Frost RL. Thermal decomposition of synthesised layered double hydroxides based upon Mg/(Fe, Cr) and carbonate. Thermochim Acta. 2008. https://doi.org/10.1016/j.tca.2008.08.016.

    Article  Google Scholar 

  8. Bezerra DM, Rodrigues JEFS, Assaf EM. Structural, vibrational and morphological properties of layered double hydroxides containing Ni2+ Zn2+ Al3+ and Zr4+ cations. Mater Charact. 2017. https://doi.org/10.1016/j.matchar.2017.01.015.

    Article  Google Scholar 

  9. Coriolano ACF, Alves AA, Araujo RA, Delgado RCOB, Carvalho FR, Fernandes VJ, Araujo AS. Thermogravimetry study of the ester interchange of sunflower oil using Mg/Al layered double hydroxides (LDH) impregnated with potassium. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-016-5803-1.

    Article  Google Scholar 

  10. Zadaviciute S, Bankauskaite A, Baltakys K, Eisinas A. The study of C-P determination of hydrotalcite intercalated with heavy metal ions. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-017-6322-4.

    Article  Google Scholar 

  11. Ashwal LD, Cairncross B. Mineralogy and origin of stichtite in chromite-bearing serpentinites. Contrib Mineral Petrol. 1997. https://doi.org/10.1007/s004100050266.

    Article  Google Scholar 

  12. Botter-Jensen L, Duller GAT. A new system for measuring optically stimulated luminescence from quartz samples. Nucl Tracks Radiat Meas. 1992;20(4):549–53.

    Article  Google Scholar 

  13. Garcia-Guinea J, Correcher V. Luminescence spectra of alkali feldspars: influence of crushing on the ultraviolet emission band. Spectrosc Lett. 2000. https://doi.org/10.1080/00387010009350062.

    Article  Google Scholar 

  14. Luff BJ, Townsend PD. High sensitivity thermoluminescence spectrometer. Meas Sci Technol. 1993;4:65–71.

    Article  Google Scholar 

  15. Bouzaid J, Frost RL. Thermal decomposition of stichtite. J Therm Anal Calorim. 2007. https://doi.org/10.1007/s10973-005-7272-9.

    Article  Google Scholar 

  16. MacRae C, Wilson N. Luminescence database i—minerals and materials. Microsc Microanal. 2008. https://doi.org/10.1017/S143192760808029X.

    Article  PubMed  Google Scholar 

  17. Garcia-Guinea J, Correcher V, Rodriguez-Badiola E. Analysis of luminescence spectra of leucite (KAISiO4). Analyst. 2001. https://doi.org/10.1039/b101869h.

    Article  PubMed  Google Scholar 

  18. Gorobets BS, Rogojine AA. Luminescence spectra of minerals. Handbook. Moscow: RPC VIMS; 2002.

    Google Scholar 

  19. Tanabe Y, Sugano S. On the absorption spectra of complex ions. 2. J Phys Soc Jpn. 1954. https://doi.org/10.1143/JPSJ.9.766.

    Article  Google Scholar 

  20. Kueck S, Hartung S, Hurling S, Petermann K. Mn3+: fundamental spectroscopy and excited-state absorption. Laser Phys. 1998;8(1):206–9.

    CAS  Google Scholar 

  21. He ZY, Ma L, Wang XJ. Studies on phosphorescence and trapping effects of Mn-doped and undoped zinc germinates. J Lumin. 2016. https://doi.org/10.1016/j.jlumin.2015.01.026.

    Article  Google Scholar 

  22. Gaft M, Reisfeld R, Panczer G. Modern luminescence spectroscopy of minerals and materials. Berlin: Springer; 2005.

    Google Scholar 

  23. Correcher V, García-Guinea J, Delgado A, Sanchez-Munoz L. Spectra thermoluminescence emissions and continuous trap distribution of a cross-hatch twinned low microcline. Radiat Prot Dosim. 1999. https://doi.org/10.1093/oxfordjournals.rpd.a032786.

    Article  Google Scholar 

  24. Montalvo TR, Tenorio LO, Nieto JA, Salgado MB, Estrada AMS, Furetta C. Thermoluminescence characteristics of hydrogenated amorphous zirconia. Radiat Eff Def Solids. 2005. https://doi.org/10.1080/10420150500215417.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Project CICYT CGL2010-17108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Correcher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correcher, V., Garcia-Guinea, J. & Rodriguez-Lazcano, Y. Thermally stimulated luminescence of a natural layered double hydroxide. J Therm Anal Calorim 133, 1253–1257 (2018). https://doi.org/10.1007/s10973-018-7205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7205-z

Keywords

Navigation