Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 3, pp 1327–1333 | Cite as

Investigation of neutron sensitivity of un-doped and Dy-doped CaB4O7 for thermoluminescence applications

  • Sera İflazoğlu
  • Ayşen Yılmaz
  • Vural E. Kafadar
  • A. Necmeddin Yazıcı


In this study, thermoluminescence characteristics of un-doped and Dy-doped calcium tetraborate (CaB4O7) compounds are reported. The polycrystalline powder samples of un-doped and Dy-doped CaB4O7 were prepared by a solid-state reaction at high-temperature method. The identification and characteristics of the obtained compounds were determined by X-ray diffraction, Fourier transform infrared analysis, differential thermal analysis, thermogravimetric analysis, and scanning electron microscopy. The glow curves were obtained using a thermoluminescent reader. Neutron sensitivity, dose–response, and heating rate of CaB4O7 compounds were determined by using a bare 252Cf mixed neutron + gamma (n + γ) source, and dose response results are compared to those of Harshaw TLD-600 and TLD-700 neutron dosimeters (6LiF:Mg,Ti and 7LiF:Mg,Ti). The sensitivity of CaB4O7:Dy (0.5%) sample is approximately 4.35 and 3.36 times higher than that of TLD-600 and TLD-700, respectively.


CaB4O7 CaB4O7:Dy Thermoluminescence Neutron dosimetry 



This work was supported by TÜBİTAK, and the Project Number is 115F268.


  1. 1.
    Delgado A, Muñiz JL, Gómez Ros JM, Romero AM, Rodríguez R. On the use of LiF TLD-600 in neutron-gamma mixed fields. Radiat Prot Dosimetry. 2007;125(1–4):327–30.Google Scholar
  2. 2.
    Abdel-Zaher Nabawia A, Moselhey Manal T H, Guirguis Osiris W. Effect of fast neutrons on the structure and thermal properties of PVA/HPMC blends. J Therm Anal Calorim. 2016;126:1289–99.CrossRefGoogle Scholar
  3. 3.
    Haghiri ME, Saion E, Soltani N, Abdullah Wan WS, Navasery M, Hashim M. Thermoluminescence characteristics of copper activated calcium borate nanocrystals (CaB4O7: Cu). J Lumin. 2013;141:177–83.CrossRefGoogle Scholar
  4. 4.
    Kazanskaya VA, Kuzmin VV, Minaeva EE, Sokolov AD. In: Proceedings of the fourth international conference on luminescence dosimetry. Krakow; 1974. p. 581.Google Scholar
  5. 5.
    Fukuda Y, Mizuguchi K, Takeuchi N. Thermoluminescence in sintered CaB4O7:Dy and CaB4O7:Eu//Radiat. Prot Dosim. 1986;17:397–401.CrossRefGoogle Scholar
  6. 6.
    Manam J, Sharma SK. Thermally stimulated luminescence studies of undoped and doped CaB4O7 compounds. Semicond Phys Quantum Electron Optoelectron. 2003;6(4):465–70.Google Scholar
  7. 7.
    Furetta C, Prokic M, Salamon R, Prokic V, Kitis G. Dosimetric characteristics of tissue equivalent thermoluminescent solid TL detectors based on lithium borate. Nucl Instrum Methods Phys Res Sect A. 2001;456(3):411–7.CrossRefGoogle Scholar
  8. 8.
    Dhoble SJ, Shahare DI, Moharil SV. Synthesis of CaB4O7:Dy phosphor. Ind J Pure Appl Phys. 2004;42:299–301.Google Scholar
  9. 9.
    Tekin EE, Ege A, Karali T, Townsend PD, Prokic M. Thermoluminescence studies of thermally treated CaB4O7:Dy. Radiat Meas. 2010;2010(45):764–7.CrossRefGoogle Scholar
  10. 10.
    Prokic M. Effect of lithium co-dopant on the thermoluminescence response of some phosphors. Appl Radiat Isot. 2000;52(1):97–103.CrossRefGoogle Scholar
  11. 11.
    Mishra GC, Upadhyay AK, Satapathy KK, Panigrahi AK, Kher RS. Thermoluminescence and mechanoluminescence of gamma-ray-irradiated CaB4O7:Dy phosphors: a comparative study. OPJIT Int J Innov Res. 2012; 1(1): ISSN 2319-4340.Google Scholar
  12. 12.
    Rojas SS, Yukimitu K, de Camargo ASS, Nunes LAO, Hernandes AC. Undoped and calcium doped borate glass system for thermoluminescent dosimeter. J Non-Cryst Solids. 2006;352:3608–12.CrossRefGoogle Scholar
  13. 13.
    Depci T, Özbayoğlu G, Yılmaz A. Comparison of different synthesis methods to produce lithium triborate and their effects on its thermoluminescent property. Metall Mater Trans A. 2010;41:2584–94.CrossRefGoogle Scholar
  14. 14.
    Özdemir Z, Özbayoğlu G, Yılmaz A. Investigation of thermoluminescence properties of metal oxide doped lithium triborate. J Mater Sci. 2007;42:8501–8.CrossRefGoogle Scholar
  15. 15.
    Manam J, Sharma SK. Evaluation of trappingparameters of thermally stimulated luminescence glow curves in Cu-doped Li2B4O7 phosphor. J Radiat Phys Chem. 2005;72:423–7.CrossRefGoogle Scholar
  16. 16.
    Pekpak E, Yılmaz A, Özbayoğlu G. The effect of synthesis and doping procedures on thermoluminescenct response of lithium tetraborate. J Alloys Compd. 2011;509:2466–72.CrossRefGoogle Scholar
  17. 17.
    Kumar M, Chourasiya G, Bhatt BC, Sunta CM. Dependence of peak height of glow curves on heating rate in thermoluminescence. J Lumin. 2010;130(7):1216–20.CrossRefGoogle Scholar
  18. 18.
    Yazıcı AN, Hacıibrahimoğlu MY, Bedir M. The effect of various experimental parameters on glow peaks and trapping parameters of CaF2:Dy (TLD-200) crystals. Turk J Phys. 2000;24(5):623–49.Google Scholar
  19. 19.
    Rasheedy MS, Zahran EM. The effect of the heating rate on the characteristics of some experimental thermoluminescence glow curves. Inst Phys Publ. 2006;73:98–102.Google Scholar
  20. 20.
    Dogan T, Yüksel M, Akça S, Portakal ZG, Yegen SB, Kucuk N, Topaksu M. Normal and anomalous heating rate effects on thermoluminescence of Ce-doped ZnB2O4. Appl Radiat Isot. 2017;128:256–62.CrossRefGoogle Scholar
  21. 21.
    Kadari A, Kadri D. New numerical model for thermal quenching mechanism in quartz based on two-stage thermal stimulation of thermoluminescence model. Arab J Chem. 2015;8(6):798–802.CrossRefGoogle Scholar
  22. 22.
    İflazoğlu S, Kafadar VE, Yazıcı B, Yazıcı AN. Thermoluminescence kinetic parameters of TLD-600 and TLD-700 after 252Cf neutron + gamma and 90Sr–90Y beta radiaions. Chin Phys Lett. 2017;34(1):017801.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Engineering PhysicsUniversity of GaziantepGaziantepTurkey
  2. 2.Department of ChemistryMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations