Skip to main content
Log in

Preparation of modified fly ash hollow glass microspheres using ionic liquids and its flame retardancy in thermoplastic polyurethane

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, a new type of flame-retardant HGM@[EOOEMIm][PF6] was prepared by modifying fly ash hollow glass microspheres (HGM) with ionic liquids 1-((ethoxycarbonyl)methyl)-3-methylimidazolium hexafluorophosphate([EOOEMIm][PF6]). The physical and chemical characteristic of HGM@[EOOEMIm][PF6] was tested by scanning electron microscope–energy-dispersive spectrometer and X-ray photoelectron spectroscopy, respectively. The flame-retardant characteristics including heat and smoke production of TPU composites were investigated using cone calorimeter test (CCT) and limiting oxygen index, etc. The CCT results revealed that the heat release rate (HRR), total smoke release, and smoke factor and so on decreased greatly with the addition of HGM@[EOOEMIm][PF6]. For example, when the loading of HGM@[EOOEMIm][PF6] was 0.125 mass%, the peak HRR value of the sample was decreased to 779.3 kW m−2 (TPU2), reduced by 23.7% compared with TPU1 (1021.1 kW m−2) containing the same loading of HGM. The thermal degradation behaviors of TPU composites have also been indicated by thermogravimetric analysis/infrared spectrometry (TG–IR). The TG–IR results showed that HGM@[EOOEMIm][PF6] could not only improve the thermal stability of TPU composites at high temperature, but also reduce the aromatic compounds as the smoke precursors. In all, HGM@[EOOEMIm][PF6] will make a great influence in improving the flame retardancy of TPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Ahmed Z, Hand D, Watkins M, Sutter L. Combined adsorption isotherms for measuring the adsorption capacity of fly ash in concrete. ACS Sustain Chem Eng. 2014;2:614–20.

    Article  CAS  Google Scholar 

  2. Ahmaruzzaman M, Gupta VK. Application of coal fly ash in air quality management. Ind Eng Chem Res. 2012;51:15299–314.

    Article  CAS  Google Scholar 

  3. Xu S. The comprehensive utilization of fly ash. Appl Mech Mater. 2013;459:82–6.

    Article  CAS  Google Scholar 

  4. Shen Y. A study on the comprehensive utilization of fly ash. Enter Sci Technol Dev. 2010;12:7–10.

    Google Scholar 

  5. Liu L, Hu J, Zhuo J, Jiao C, Chen X, Li S. Synergistic flame retardant effects between hollow glass microspheres and magnesium hydroxide in ethylene-vinyl acetate composites. Polym Degrad Stab. 2014;104:87–94.

    Article  CAS  Google Scholar 

  6. Hu Y, Mei R, An Z, Zhang J. Silicon rubber/hollow glass microsphere composites: influence of broken hollow glass microsphere on mechanical and thermal insulation property. Compos Sci Technol. 2013;79:64–9.

    Article  CAS  Google Scholar 

  7. Jiao Y, Xiao G, Xu W, Zhu R, Lu Y. Factors influencing the deposition of hydroxyapatite coating onto hollow glass microspheres. Mater Sci Eng. 2013;33:2744–51.

    Article  CAS  Google Scholar 

  8. Sun L, Wan S, Yu Z, Wang L. Optimization and modeling of preparation conditions of TiO2 nanoparticles coated on hollow glass microspheres using response surface methodology. Sep Purif Technol. 2014;125:156–62.

    Article  CAS  Google Scholar 

  9. Jiao C, Wang H, Li S, Chen X. Fire hazard reduction of hollow glass microspheres in thermoplastic polyurethane composites. J Hazard Mater. 2017;332:176–84.

    Article  CAS  PubMed  Google Scholar 

  10. Li J, Luo X, Lin X. Preparation and characterization of hollow glass microsphere reinforced poly(butylene succinate) composites. Mater Des. 2013;46:902–9.

    Article  CAS  Google Scholar 

  11. Chen X, Jiang Y, Jiao C. Synergistic effects between hollow glass microsphere and ammonium polyphosphate on flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2014;117:857–66.

    Article  CAS  Google Scholar 

  12. Wang Y, Ulrich V, Donnelly G, Lorenzini F, Marr A, Marr P. A recyclable acidic ionic liquid gel catalyst for dehydration: comparison with an analogous SILP catalyst. ACS Sustain Chem Eng. 2015;3:792–6.

    Article  CAS  Google Scholar 

  13. Ran S, Guo Z, Han L. Effect of Friedel–Crafts reaction on the thermal stability and flammability of high-density polyethylene/brominated polystyrene/graphene nanoplatelet composites. Polym Int. 2014;63(10):1835–41.

    Article  CAS  Google Scholar 

  14. Chen X, Feng X, Jiao C. Combustion and thermal degradation properties of flame-retardant TPU based on EMIMPF6. J Therm Anal Calorim. 2017;129(2):1–7.

    Google Scholar 

  15. Chen X, Jiang Y, Jiao C. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Hazard Mater. 2014;266:114–21.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou K, Zhou G, Hu Y, et al. The influence of cobalt oxide–graphene hybrids on thermal degradation, fire hazards and mechanical properties of thermoplastic polyurethane composites. Compos Part A. 2016;88:10–8.

    Article  CAS  Google Scholar 

  17. Chattopadhyay D, Webster D. Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci. 2009;34:1068–133.

    Article  CAS  Google Scholar 

  18. Zhou K, Gui Z, Hu Y. The influence of graphene based smoke suppression agents on reduced fire hazards of polystyrene composites. Compos Part A. 2016;80:217–27.

    Article  CAS  Google Scholar 

  19. Jiao C, Wang H, Zhang Z, et al. Preparation and properties of an efficient smoke suppressant and flame-retardant agent for thermoplastic polyurethane. Polym Adv Technol. 2017;28:1690–8.

    Article  CAS  Google Scholar 

  20. Covaci A, Harrad S, Abdallah MA, et al. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int. 2011;37:532–56.

    Article  CAS  PubMed  Google Scholar 

  21. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta J, Dubois P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng. 2009;63:100–25.

    Article  CAS  Google Scholar 

  22. Chen X, Ma C, Jiao C. Synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2016;126:633–42.

    Article  CAS  Google Scholar 

  23. Chen X, Jiao C. Synergistic effects of hydroxy silicone oil on intumescent flame retardant polypropylene system. Fire Saf J. 2009;44:1010–4.

    Article  CAS  Google Scholar 

  24. Zhou K, Rui G, Qian X. Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): towards reducing fire hazards of epoxy. J Hazard Mater. 2017;338:343–55.

    Article  PubMed  Google Scholar 

  25. Zhou K, Qian X, Gao R, et al. Facile synthesis and characterization of a novel silica-molybdenum disulfide hybrid material. J Colloid Interface Sci. 2017;504:158–63.

    Article  CAS  PubMed  Google Scholar 

  26. Ge H, Tang G, Hu W, Wang B, Pan Y, Song L, et al. Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6. J Hazard Mater. 2015;294:186–94.

    Article  CAS  PubMed  Google Scholar 

  27. Hu W, Yu B, Jiang S, Song L, Hu Y, Wang B. Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene. J Hazard Mater. 2015;300:58–66.

    Article  CAS  PubMed  Google Scholar 

  28. Morgan A, Bundy M. Cone calorimeter analysis of UL-94 V-rated plastics. Fire Mater. 2007;31:257–83.

    Article  CAS  Google Scholar 

  29. Jiao C, Zhao X, Song W, Chen X. Synergistic flame retardant and smoke suppression effects of ferrous powder with ammonium polyphosphate in thermoplastic polyurethane composites. J Therm Anal Calorim. 2015;120:1173–81.

    Article  CAS  Google Scholar 

  30. Nie S, Peng C, Yuan S, Zhang M. Thermal and flame retardant properties of novel intumescent flame retardant polypropylene composites. J Therm Anal Calorim. 2012;113:865–71.

    Article  CAS  Google Scholar 

  31. Wumin-Min K, Shen M, Hu Y, Xing W, Wang X. Thermal degradation and intumescent flame retardation of cellulose whisker/epoxy resin composite. J Therm Anal Calorim. 2011;104:1083–90.

    Article  CAS  Google Scholar 

  32. Zhao X, Guerrero F, Llorca J, Wang D. New superefficiently flame-retardant bioplastic poly:flammability, thermal decomposition behavior, and tensile properties. ACS Sustain Chem Eng. 2016;4:202–9.

    Article  CAS  Google Scholar 

  33. Liu Y, Pearce E, Weil E. Flame retardancy of dicyandiamide-crosslinked epoxy resins containing phenolphthalein structures and/or a phosphorus containing additive. J Fire Sci. 1999;17:240–58.

    Article  CAS  Google Scholar 

  34. Chiu S, Wang W, Chiu S. Flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer. 1998;39:1951–5.

    Article  CAS  Google Scholar 

  35. Chen X, Liu L, Jiao C, Qian Y, Li S. Influence of ferrite yellow on combustion and smoke suppression properties in intumescent flame-retardant epoxy composites. High Perform Polym. 2014;27:412–25.

    Article  CAS  Google Scholar 

  36. Ricciardi M, Antonucci V, Zarrelli M, Giordano M. Fire behavior and smoke emission of phosphate-based inorganic fire-retarded polyester resin. Fire Mater. 2012;36:203–15.

    Article  CAS  Google Scholar 

  37. Chen X, Liu L, Zhuo J, Jiao C. Influence of iron oxide green on smoke suppression properties and combustion behavior of intumescent flame retardant epoxy composites. J Therm Anal Calorim. 2014;119:625–33.

    Article  CAS  Google Scholar 

  38. Ye L, Qu B. Flammability characteristics and flame retardant mechanism of phosphate intercalated hydrotalcite in halogen-free flame retardant EVA blends. Polym Degrad Stab. 2008;93:918–24.

    Article  CAS  Google Scholar 

  39. Yang K, Xu M-J, Li B. Synthesis of N-ethyl triazine–piperazine copolymer and flame retardancy and water resistance of intumescent flame retardant polypropylene. Polym Degrad Stab. 2013;98:1397–406.

    Article  CAS  Google Scholar 

  40. Yan Y, Chen L, Jian R, Kong S, Wang Y. Intumescence: an effect way to flame retardance and smoke suppression for polystryene. Polym Degrad Stab. 2012;97:1423–31.

    Article  CAS  Google Scholar 

  41. Zhou K, Tang G, Jiang S, et al. Combination effect of MoS2 with aluminum hypophosphite in flame retardant ethylene-vinyl acetate composites. RSC Adv. 2016;6(44):37672–80.

    Article  CAS  Google Scholar 

  42. Li X, Chen H, Wang W, Liu Y, Zhao P. Synthesis of a formaldehyde-free phosphorus–nitrogen flame retardant with multiple reactive groups and its application in cotton fabrics. Polym Degrad Stab. 2015;120:193–202.

    Article  CAS  Google Scholar 

  43. Ménard R, Negrell C, Ferry L, Sonnier R, David G. Synthesis of biobased phosphorus-containing flame retardants for epoxy thermosets comparison of additive and reactive approaches. Polym Degrad Stab. 2015;120:300–12.

    Article  CAS  Google Scholar 

  44. Pan Y, Zhan J, Pan H, Wang W, Tang G, Song L, et al. Effect of fully biobased coatings constructed via layer-by-layer assembly of chitosan and lignosulfonate on the thermal, flame retardant, and mechanical properties of flexible polyurethane poam. ACS Sustain Chem Eng. 2016;4:1431–8.

    Article  CAS  Google Scholar 

  45. Wang Z, Liu Y, Li J. Regulating effects of nitrogenous bases on char structure and flame retardancy of polypropylene/intumescent flame retardant composites. ACS Sustain Chem Eng. 2017;5:2375–83.

    Article  CAS  Google Scholar 

  46. Chen X, Jiang Y, Liu J, Jiao C, Qian Y, Li S. Smoke suppression properties of fumed silica on flame-retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim. 2015;120:1493–501.

    Article  CAS  Google Scholar 

  47. Wang B, Song L, Hong N, Tai Q, Lu H, Hu Y. Effect of electron beam irradiation on the mechanical and thermal properties of intumescent flame retarded ethylene-vinyl acetate copolymer/organically modified montmorillonite nanocomposites. Radiat Phys Chem. 2011;80:1275–81.

    Article  CAS  Google Scholar 

  48. Ramani A, Dahoe A. On the performance and mechanism of brominated and halogen free flame retardants in formulations of glass fibre reinforced poly(butylene terephthalate). Polym Degrad Stab. 2014;104:71–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. 51776101, 51206084), the Major Special Projects of Science and Technology from Shandong Province (2015ZDZX11011), the Natural Science Foundation of Shandong Province (ZR2017MB016), and the Project of the State Administration of Work Safety (shandong-0039-2017AQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, C., Wang, H. & Chen, X. Preparation of modified fly ash hollow glass microspheres using ionic liquids and its flame retardancy in thermoplastic polyurethane. J Therm Anal Calorim 133, 1471–1480 (2018). https://doi.org/10.1007/s10973-018-7190-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7190-2

Keywords

Navigation