Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 3, pp 1233–1239 | Cite as

Thermal characterization of Er-doped and Er–Gd co-doped ceria-based electrolyte materials for SOFC

  • Handan Ozlu Torun
  • Soner Çakar


Ce1−xErxO2 and Ce1−2xErxGdxO2 co-doped ceria electrolyte nanopowder materials were successfully prepared by sol–gel method. Depending on the temperature, the crystal structure changes were analyzed by X-ray diffraction. It was observed that the crystal size of the electrolytes decreased depending on the temperature and the time. X-ray diffraction results confirmed cubic fluorite structure in the samples. The microstructural properties of the samples were analyzed by scanning electron microscopy, and thermal stability measurement was performed by thermogravimetric and differential thermal analyses. The total electrical conductivity of the nanopowder electrolytes was determined by the dc four-point probe technique in air at temperatures ranging from room temperature to 1373 K. The four-probe conductivity results revealed that Ce0.8Er0.1Gd0.1O2 has a higher ionic conductivity compared to Ce0.83Er0.17O2 at 1123 K. The four-probe conductivity results show that both Ce1−xErxO2 and Ce1−2xErxGdxO2 solid electrolytes have potential application to oxide ionic conductor for solid oxide fuel cells.


Ce1−xErxO2 Ce1−2xErxGdxO2 Solid electrolyte characterization Ceramic conductor application Sol–gel 



This study was supported by Scientific Research Projects Unit of Kahramanmaras Sutcu Imam University (Project Code: BAP-2013/7-18M), (KSU-Turkey) and Elbistan Technology Faculty.


  1. 1.
    Haile SM. Fuel cell materials and components. Acta Mater. 2003;51(19):5981–6000.CrossRefGoogle Scholar
  2. 2.
    Ramesh S, Raju KCJ. Preparation and characterization of Ce1−x(Gd0.5Pr0.5)xO2 electrolyte for IT-SOFCs. Int J Hydrogen Energy. 2012;37(13):10311–7.CrossRefGoogle Scholar
  3. 3.
    Arabaci A. Effect of Sm and Gd dopants on structural characteristics and ionic conductivity of ceria. Ceram Int. 2015;41(4):5836–42.CrossRefGoogle Scholar
  4. 4.
    Mahato N, Amitava B, Alka G, Shobit O, Kantesh B. Progress in materials science progress in material selection for solid oxide fuel cell technology: a review. ProgMater Sci. 2015;72:141–337.Google Scholar
  5. 5.
    Rane PS, Dubey RV, Rawal DB, Mandake MB. Critical review on fabrication of tubular solid oxide fuel cell. Int Res J Eng Technol. 2017;24:09–14.Google Scholar
  6. 6.
    Wang XW, Chen JG, Tian YW, Wang XE, Zhang BH, Chang XH. Lattice strain dependent on ionic conductivity of Ce0.8−xY0.2−2xSrxO1.9 (x 0–0.8) electrolyte. Solid State Ionics. 2016;296:85–9.CrossRefGoogle Scholar
  7. 7.
    Ahmadi R, Seyyed M, Saeed G. Exergoeconomic optimization of hybrid system of GT, SOFC and MED implementing genetic algorithm. Desalination. 2017;411:76–88.CrossRefGoogle Scholar
  8. 8.
    Anyenya GA, Neal PS, Braun JR. Modeling and simulation of a novel 4.5 kW E multi-stack solid-oxide fuel cell prototype assembly for combined heat and power. Energy Convers Manag. 2017;140:247–59.CrossRefGoogle Scholar
  9. 9.
    Jacobson AJ. Materials for solid oxide fuel cells. Chem Mater. 2010;22(3):660–74.CrossRefGoogle Scholar
  10. 10.
    Timurkutluk B, Celik S, Timurkutluk C, Mat M, Kaplan Y. Novel structured electrolytes for solid oxide fuel cells. J Power Sources. 2012;213:47–54.CrossRefGoogle Scholar
  11. 11.
    Han M, Xiuling T, Huiyan Y, Suping P. Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J Power Sources. 2007;165:757–63.CrossRefGoogle Scholar
  12. 12.
    Chou C, Chun-feng H, Tsung-her Y. Investigation of ionic conductivities of CeO2-based electrolytes with controlled oxygen vacancies. Ceram Int. 2013;39:627–31.CrossRefGoogle Scholar
  13. 13.
    Torun HO, Cakar S, Ersoy E, Yildiz E, Yilmaz S, Turkoglu O, Sarioz O. The bulk electrical conductivity properties of D-Bi2O3 solid electrolyte system doped with Yb2O3. J Therm Anal Calorim. 2015;122(2):525–36.CrossRefGoogle Scholar
  14. 14.
    Ozlu H, Cakar S, Bilir C, Ersoy E. Synthesis and characterization of γ-Bi2O3 based solid electrolyte doped with Nb2O5. Bull Mater Sci. 2014;37(4):843–8.CrossRefGoogle Scholar
  15. 15.
    Ersoy E, Cakar S, Yildiz E, Yilmaz S, Turkoglu O, Sarıoz S. Fabrication and characterization of dysprosium-doped bismuth oxide films for IT-SOFCs via slurry spin coating technique. Int J Appl Ceram Technol. 2015;12:152–61.CrossRefGoogle Scholar
  16. 16.
    Anjaneya KC, Nayaka GP, Manjanna J, Govindaraj G, Ganesha KN. Preparation and characterization of Ce1−xGdxO2−D (x = 0.1–0.3) as solid electrolyte for intermediate temperature SOFC. J Alloys Compd. 2013;578:53–9.CrossRefGoogle Scholar
  17. 17.
    Okkay H, Bayramoğlu M, Öksüzömer MF. Ultrasound assisted synthesis of Gd and Nd doped ceria electrolyte for solid oxide fuel cells. Ceram Int. 2012;39(5):1–7.Google Scholar
  18. 18.
    Cesário MR, Savary E, Marinel S, Raveau B, Caignaert V. Synthesis and electrochemical performance of Ce1−xYbxO2−x/2 solid electrolytes: the potential of microwave sintering. Solid State Ionics. 2016;294:67–72.CrossRefGoogle Scholar
  19. 19.
    Oncel C, Gulgun MA. Chemical synthesis of LSGM powders for solid oxide fuel cell (SOFC) electrolyte. Dev Solid Oxide Fuel Cells Lithium Ion Batter. 2012;161:61–8.CrossRefGoogle Scholar
  20. 20.
    Oncel C, Gulgun MA. Chemical synthesis of mixed oxide powders for solid oxide fuel cell (SOFC) electrolyte and electrodes. In: Assessment of hydrogen energy for sustainable development; 2007. p. 147–59.Google Scholar
  21. 21.
    Arabacı A, Faruk M. Preparation and characterization of 10 Mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications. Crem Int. 2012;38:6509–15.CrossRefGoogle Scholar
  22. 22.
    Steele BCH. Appraisal of Ce1−YGdYO2−Y/2 electrolytes for IT-SOFC operation at 500 C. Solid State Ionics. 2000;129:95–110.CrossRefGoogle Scholar
  23. 23.
    Moure A, Castro A, Martinez I, Moure C, Tartaj J. Synthesis, sintering and ionic conductivity of scandia-doped ceria ceramic materials obtained by different procedures. Ceram Int. 2012;38(7):5907–14.CrossRefGoogle Scholar
  24. 24.
    Kim G, Lee N, Kim KB, Chang H, Song SJ, Park JY. Various synthesis methods of aliovalent-doped ceria and their electrical properties for intermediate temperature solid oxide electrolytes. Int J Hydrog Energy. 2013;38(3):1571–87.CrossRefGoogle Scholar
  25. 25.
    Dikmen S, Aslanbay H, Dikmen E, Şahin O. Hydrothermal preparation and electrochemical properties of Gd3+ and Bi 3+, Sm 3+, La 3+, and Nd3+codoped ceria-based electrolytes for intermediate temperature-solid oxide fuel cell. J Power Sources. 2010;195(9):2488–95.CrossRefGoogle Scholar
  26. 26.
    Zheng Y, He S, Ge L, Zhou M, Chen H, Guo L. Effect of Sr on Sm-doped ceria electrolyte. Int J Hydrog Energy. 2011;36(8):5128–35.CrossRefGoogle Scholar
  27. 27.
    Kahlaoui M, Chefi S, Inoubli A, Madani A, Chefi C. Synthesis and electrical properties of co-doping with La 3+, Nd 3+, Y 3+, and Eu3+ citric acid-nitrate prepared Samarium-doped ceria ceramics. Ceram Int. 2013;39(4):3873–9.CrossRefGoogle Scholar
  28. 28.
    Zhang YC, Li Z, Zhang L, Pan L, Zhang X, Wang L, Fazal A, Zou JJ. Role of oxygen vacancies in photocatalytic water oxidation on ceria oxide: experimental and DFT. App Cat B Environ. 2018;224:101–8.CrossRefGoogle Scholar
  29. 29.
    Deka K, Nath N, Saikia BK, Deb P. Kinetic analysis of ceria nanoparticle catalyzed efficient biomass pyrolysis for obtaining high-quality bio-oil. J Therm Anal Calorim. 2017;130:1875–83.CrossRefGoogle Scholar
  30. 30.
    Munteanu G, Petrova P, Ivanov I, Liotta LF, Karzkur Z, Tabakova T, Illieva L. Temperature-programmed reduction of lightly yttrium-doped Au/CeO2 catalysis. J Therm Anal Calorim. 2018;131:145–54.CrossRefGoogle Scholar
  31. 31.
    Ebrahimi M, Nikoofard H, Faridbod F, Dezfuli AS, Beigizadeh H, Norouzi P. A ceria NPs decorated graphene nano-composite sensor for sulfadiazine determination in pharmaceutical formulation. J Mater Sci Mat Electron. 2017;28(22):16704–12.CrossRefGoogle Scholar
  32. 32.
    Xie S, Wang Z, Cheng F, Zhang P, Mai W, Tong Y. Ceria and ceria-based nanostructured materials for photoenergy applications. Nano Energy. 2017;34:313–37.CrossRefGoogle Scholar
  33. 33.
    Zhou W, Zhu J, Wang F, Cao M, Zhao T. One-step synthesis Ceria/Ti3C2 nanocomposites with enhanced photocatalytic activities. Matt Lett. 2017;206:237–40.CrossRefGoogle Scholar
  34. 34.
    Batista RM, Muccillo ENS. Dilatometry analysis of the sintering process of nanostructured gadolinia-doped ceria. J Therm Anal Calorim. 2016;130(3):1875–83.Google Scholar
  35. 35.
    Tesitelova K, Sulcova P. Synthesis and study of mixed oxide inorganic pigment from Bi2O3–ZnO–CeO2. J Therm Anal Calorim. 2017;130(1):57–62.CrossRefGoogle Scholar
  36. 36.
    Tesitelova K, Sulcova P. Synthesis and study of Bi2Ce2O7 as inorganic pigment. J Therm Anal Calorim. 2016;125(3):1047–52.CrossRefGoogle Scholar
  37. 37.
    Matskevich NI, Wolf T, Vyazovkin IV. Thermochemical characteristics of SrCeO3 doped by Eu2O3. J Therm Anal Calorim. 2016;124(2):989–92.CrossRefGoogle Scholar
  38. 38.
    Ko HH, Yang G, Wang MC, Zhao X. Thermal behavior and crystallization kinetics of cerium dioxide precursor powders. Ceram Int. 2014;40(9):13953–9.CrossRefGoogle Scholar
  39. 39.
    Li JG, Ikegami T, Lee JH, Mori T. Characterization and sintering of nanocrystalline CeO2 powders synthesized by a mimic alkoxide method. Acta Mater. 2001;49(3):419–26.CrossRefGoogle Scholar
  40. 40.
    Yashima M, Kobayashi S, Yasui T. Crystal structure and the structural disorder of ceria from 40 to 1497°C. Solid State Ion. 2006;177:211–5.CrossRefGoogle Scholar
  41. 41.
    Shannon RD, Prewitt CD. Effective ionic radii in oxide and fluorides. Acta Crystallog. 1969;25:925–46.CrossRefGoogle Scholar
  42. 42.
    Zhu B, Tahara Y, Yasunaga K, Matsui T, Hori F, Iwase A. Study on analysis of crystal structure in CeO2 doped with Er2O3 or Gd2O3. J Rare Earths. 2010;28:164–7.CrossRefGoogle Scholar
  43. 43.
    Chaubey N, Wani BN, Bharadwaj SR, Chattopadhyaya MC. Physicochemical properties of rare earth doped ceria Ce0.9Ln0.1O1.95 (Ln = Nd, Sm, Gd) as an electrolyte material for IT-SOFC/SOEC. Solid State Sci. 2013;20:135–41.CrossRefGoogle Scholar
  44. 44.
    Balazs G. Ac impedance studies of rare earth oxide doped ceria. Solid State Ionics. 1995;76(1–2):155–62.CrossRefGoogle Scholar
  45. 45.
    Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B. Optimization of ionic conductivity in doped ceria. Proc Natl Acad Sci USA. 2006;103(10):3518–21.CrossRefGoogle Scholar
  46. 46.
    Omar S, Wachsman ED, Nino JC. Higher conductivity Sm3+ and Nd3+ Co-doped ceria-based electrolyte materials. Solid State Ionics. 2008;178(37–38):1890–7.CrossRefGoogle Scholar
  47. 47.
    Kuharuangrong S. Ionic conductivity of Sm, Gd, Dy and Er-doped ceria. J Power Sources. 2007;171(2):506–10.CrossRefGoogle Scholar
  48. 48.
    Singhal SC, Kendall K. High temperature solid oxide fuel cells: fundamentals, design and applications. Amsterdam: Elsevier; 2003.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Energy System Engineering, Faculty of TechnologyKahramanmaraşSütçü İmam UniversityKahramanmaraşTurkey
  2. 2.Science and Technology Research and Application Center (ARTMER)Bulent Ecevit UniversityZonguldakTurkey

Personalised recommendations