Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 2, pp 851–857 | Cite as

Thermal and electrical properties of CaCu3Ti4O12 synthesized by soft chemistry route

  • T. C. PorfirioEmail author
  • E. N. S. Muccillo


Calcium copper titanate powders were synthesized by a soft chemistry route, aiming to establish a cost-effective solution method to obtain sintered ceramics with giant electric permittivity (ε′) and low dissipation factor (tanδ). Powders and sintered pellets were characterized by several techniques. The thermal decomposition behavior of the porous foam evidences that a hydroxycitrate was formed below 200 °C. Single cubic perovskite-type phase was obtained after calcination of the precursor powder at 700 °C for 5 h. Negligible mass loss occurs above 400 °C. During heating the precursor material, CuO is the first crystallized phase. A giant ε′ and low tanδ are obtained after sintering. The extension of the thermal window of ε′ is wider than those of powders prepared by other methods.


TG DTA Synthesis Dielectric properties 



The authors greatly acknowledge the financial supports of FAPESP (2013/07296-2), CNPq (304073/2014-8) and CNEN.


  1. 1.
    Subramanian MA, Li D, Duan N, Reisner BA, Sleight WA. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J Solid State Chem. 2000;151:323–5.CrossRefGoogle Scholar
  2. 2.
    Ramirez AP, Subramanian MA, Gardel M, Blumberg G, Li D, Vogt T, Shapiro SM. Giant dielectric constant response in a copper–titanate. Mater Lett. 2000;115:217–20.Google Scholar
  3. 3.
    Brizé V, Gruener G, Wolfman J, Fatyeyeva K, Tabellout M, Gervais M, Gervais F. Grain size effects on the dielectric constant of CaCu3Ti4O12 ceramics. Mater Sci Eng. 2006;B129:135–8.CrossRefGoogle Scholar
  4. 4.
    Shao SF, Zhang JL, Zheng P, Wang CL. Effect of Cu-stoichiometry on the dielectric and electric properties in CaCu3Ti4O12 ceramics. Solid State Commun. 2007;142:281–6.CrossRefGoogle Scholar
  5. 5.
    Fang T-T, Mei L-T, Ho H-F. Effect of Cu stoichiometry on the microstructures, barrier-layer structures, electrical conduction, dielectric responses and stability of CaCu3Ti4O12. Acta Mater. 2006;54:2867–75.CrossRefGoogle Scholar
  6. 6.
    Liu J, Smith RW, Mei W-N. Synthesis of the giant dielectric constant material CaCu3Ti4O12 by wet-chemistry methods. Chem Mater. 2007;19:6020–4.CrossRefGoogle Scholar
  7. 7.
    Marchin L, Guillemet-Fritsch S, Durand B, Levchenko AA, Navrotsky A. Grain growth-controlled giant permittivity in soft chemistry CaCu3Ti4O12 ceramics. J Am Ceram Soc. 2008;91:485–9.CrossRefGoogle Scholar
  8. 8.
    Zhao Y, Gao R, Su G, Lin H, Wang C, Cheng C. Effect of dispersant on CaCu3Ti4O12 powders synthesized by oxalate co-precipitation method. Mater Lett. 2013;91:187–90.CrossRefGoogle Scholar
  9. 9.
    Porfirio TC, Muccillo ENS. Influence of lithium disilicate addition on the dielectric properties of chemically synthesized CaCu3Ti4O12. J Mater Sci Mater Electron. 2015;26:3970–5.CrossRefGoogle Scholar
  10. 10.
    Wan W, Yang J, Qiu T, Yuan W-X, Liu C, Zhao X. Preparation of giant dielectric CaCu3Ti4O12 ceramics via molten salt method from NaCl flux. Int J Appl Ceram Technol. 2016;13:382–8.CrossRefGoogle Scholar
  11. 11.
    Liu L, Fan H, Fang P, Chen X. Sol-gel derived CaCu3Ti4O12 ceramics: synthesis, characterization and electrical properties. Mater Res Bull. 2008;43:1800–7.CrossRefGoogle Scholar
  12. 12.
    Thomas P, Dwarakanauth K, Varma KBR, Kutty TRN. Synthesis of nanoparticles of the giant dielectric material, CaCu3Ti4O12 from a precursor route. J Therm Anal Calorim. 2009;95:267–72.CrossRefGoogle Scholar
  13. 13.
    Masingboon C, Thongbai P, Maensiri S, Yamwong T. Nanocrystalline CaCu3Ti4O12 powder by PVA sol-gel route: synthesis, characterization and its giant dielectric constant. Appl Phys. 2009;A96:595–602.CrossRefGoogle Scholar
  14. 14.
    Jesurani S, Kanagesan S, Velmurugan R, Thirupathi C, Sivakumar M, Kalaivani T. Nanoparticles of the giant dielectric material, calcium copper titanate from a sol-gel technique. Mater Lett. 2011;65:3305–8.CrossRefGoogle Scholar
  15. 15.
    He Y, Liu T, Xu Y, Zhao J, Du Z. Synthesis of the giant dielectric constant oxide CaCu3Ti4O12 via ethylenediaminetetraacetic acid precursor. Mater Res Bull. 2012;47:1181–4.CrossRefGoogle Scholar
  16. 16.
    Porfirio TC, Muccillo ENS. Dielectric properties of CaCu3Ti4O12 synthesized by different routes. Adv Mater Res. 2014;975:184–8.CrossRefGoogle Scholar
  17. 17.
    Yang Y, Wang X, Liu B. CaCu3Ti4O12 ceramics from different methods: microstructure and dielectric. J Mater Sci Mater Electron. 2014;25:146–51.CrossRefGoogle Scholar
  18. 18.
    Zhang W, Li L, Li P, Chen W. A Novel method to synthesize CaCu3Ti4O12 with acetylacetonate precursor. Mater Lett. 2016;181:71–3.CrossRefGoogle Scholar
  19. 19.
    Muccillo ENS, Rocha RA, Muccillo R. Preparation of Gd2O3-doped ZrO2 by polymeric precursor techniques. Mater Lett. 2002;53:353–8.CrossRefGoogle Scholar
  20. 20.
    Courty PH, Ajot H, Marcilly C. Oxydes mixtes ou en solution solides sous forme trés divisée obtenus par décomposition thermique de précurseurs amorphes. Powder Technol. 1973;7:21–38.CrossRefGoogle Scholar
  21. 21.
    Rocha RA, Muccillo ENS. Physical and chemical properties of nanosized powders of gadolinia-doped ceria prepared by the cation complexation technique. Mater Res Bull. 2003;38:1979–86.CrossRefGoogle Scholar
  22. 22.
    Fang T-T, Liu CP. Evidence of the internal domains for inducing the anomalously high dielectric constant of CaCu3Ti4O12. Chem Mater. 2005;17:5167–71.CrossRefGoogle Scholar
  23. 23.
    Romero JJ, Leret P, Rubio-Marcos F, Quesada A, Fernández JF. Evolution of the intergranular phase during sintering of CaCu3Ti4O12 ceramics. J Eur Ceram Soc. 2010;30:737–42.CrossRefGoogle Scholar
  24. 24.
    Sangwong N, Yamwong T, Thongbai P. Synthesis, characterization and giant dielectric propertied of CaCu3Ti4O12 ceramics prepared by a polyvinyl pyrrolidone-dimethylformamide solution route. J Electroceram. 2013;31:181–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Energy and Nuclear Research Institute – IPENSão PauloBrazil
  2. 2.Center of Materials Science and TechnologyEnergy and Nuclear Research InstituteSão PauloBrazil

Personalised recommendations