Skip to main content
Log in

Thermal decomposition of praseodymium nitrate hexahydrate Pr(NO3)3·6H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The hexahydrate of praseodymium nitrate hexahydrate Pr(NO3)3·6H2O does not show phase transitions in the range of 233–328 K when the compound melts in its own water of crystallization. It is suggested that the thermal decomposition is a complex step-wise process, which involves the condensation of 6 mol of the initial monomer Pr(NO3)3·6H2O into a cyclic cluster 6[Pr(NO3)3·6H2O]. This hexamer gradually loses water and nitric acid, and a series of intermediate amorphous oxynitrates is formed. The removal of 68% HNO3–32% H2O azeotrope is essentially a continuous process occurring in the liquid phase. At higher temperatures, oxynitrates undergo thermal degradation and lose water, nitrogen dioxide and oxygen, leaving behind normal praseodymium oxide Pr2O3. The latter absorbs approximately 1 mol of atomic oxygen from N2O5 disproportionation, giving rise to the non-stoichiometric higher oxide Pr2O3.33. All mass losses are satisfactorily accounted for under the proposed scheme of thermal decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Merbach AE, Helm L, Toth E. The chemistry of contrast agents in medical magnetic resonance imaging. 2nd ed. Chichester: Wiley; 2013.

    Book  Google Scholar 

  2. Decadt R, Van Der Voort P, Van Driessche I, Van Deun R, Van Hecke K. Redetermination of [Pr(NO3)3(H2O)4]·2H2O. Acta Crystallogr E. 2012;68:i59–60.

    Article  CAS  Google Scholar 

  3. Hussein GAM, Balboul BAA, A-Warith MA, Othman AGM. Thermal genesis and characterization of praseodymium oxide from praseodymium nitrate hydrate. Thermochim Acta. 2007;369:59–66.

    Article  Google Scholar 

  4. Melnikov P, Nascimento VA, Zanoni Consolo LZ. Thermal decomposition of gallium nitrate hydrate and modeling of thermolysis products. J Therm Anal Calorim. 2012;107:1117–21.

    Article  CAS  Google Scholar 

  5. Melnikov P, Nascimento VA, Zanoni Consolo LZ. Computerized modeling of intermediate compounds formed during thermal decomposition of gadolinium nitrate hydrate. Russ J Phys Chem. 2012;86:1659–63.

    Article  CAS  Google Scholar 

  6. Melnikov P, Nascimento VA, Consolo LZZ, Silva AF. Mechanism of thermal decomposition of yttrium nitrate hexahydrate Y(NO3)3·6H2O and modeling of intermediate oxynitrates. J Therm Anal Calorim. 2013;111:115–9.

    Article  CAS  Google Scholar 

  7. Melnikov P, Nascimento VA, Arkhangelsky IV, Zanoni Consolo LZ. Thermal decomposition mechanism of aluminum nitrate octahydrate and characterization of intermediate products by the technique of computerized modeling. J Therm Anal Calorim. 2013;111:543–8.

    Article  CAS  Google Scholar 

  8. Melnikov P, Nascimento VA, Arkhangelsky IV, Zanoni Consolo LZ, de Oliveira LCS. Thermolysis mechanism of chromium nitrate nonahydrate and computerized modeling of intermediate products. J Therm Anal Calorim. 2013;114:1021–7.

    Article  CAS  Google Scholar 

  9. Melnikov P, Nascimento VA, Arkhangelsky IV, Zanoni Consolo LZ, de Oliveira LCS. Thermal decomposition mechanism of iron (III) nitrate and characterization of intermediate products by the technique of computerized modeling. J Therm Anal Calorim. 2014;115:145–51.

    Article  CAS  Google Scholar 

  10. Melnikov P, Arkhangelsky IV, Nascimento VA, Silva AF, Zanoni Consolo LZ, de Oliveira LCS, Herrero AS. Thermolysis mechanism of dysprosium hexahydrate nitrate Dy(NO3)3·6H2O and modeling of intermediate decomposition products. J Therm Anal Calorim. 2015;122:571–8.

    Article  CAS  Google Scholar 

  11. Melnikov P, Arkhangelsky IV, Nascimento VA, Silva AF, Zanoni Consolo LZ. Thermolysis mechanism of samarium nitrate hexahydrate. J Therm Anal Calorim. 2014. https://doi.org/10.1007/s10973-014-4067-x.

    Article  Google Scholar 

  12. Melnikov P, Nascimento VA, Arkhangelsky IV, Silva AF, Zanoni-Consolo LZ. Thermogravimetric study of the scandium nitrate hexahydrate thermolysis and computer modeling of intermediate oxynitrates. J Therm Anal Calorim. 2014. https://doi.org/10.1007/s10973-014-4272-7.

    Article  Google Scholar 

  13. Melnikov P, Arkhangelsky IV, Nascimento VA, de Oliveira LCS, Silva AF, Zanoni LZ. Thermal analysis of europium nitrate hexahydrate Eu(NO3)3·6H2O. J Therm Anal Calorim. 2016. https://doi.org/10.1007/s10973-016-6047-9.

    Article  Google Scholar 

  14. Strydom CA, Van Vuuren CPJ. The thermal decomposition of lanthanum(III), praseodymium (III) and europium(III) nitrates. Thermochim Acta. 1988;124:277–83.

    Article  CAS  Google Scholar 

  15. Young DC. Computational chemistry: a practical guide for applying techniques to real-world problems. New York: Wiley; 2001.

    Book  Google Scholar 

  16. NIST Chemistry WebBook. NIST Standard Reference Database Number 69. www.http//webbook.nist/chemistry. Accessed 8 May 2016.

  17. Huang C-H, editor. Rare earth coordination chemistry. Fundamentals and applications. Singapore: Wiley; 2010.

    Google Scholar 

  18. Manelis GB, Nazin GM, Rubtsov YT, Strunin VA. Thermal decomposition and combustion of explosives and propellants. Boca Raton: CRC Press; 2003.

    Google Scholar 

  19. Liu Y, Bluck D., Brana-Melero F. Static and dynamic simulation of NOx absorption tower based on a hybrid-kinetic equilibrium reaction model. In: Eden MR, Siirola JD, Towler GP, editors. Proceedings of the 8th international conference on foundations of computer-aided process design. Amsterdam: Elsevier; 2014.

  20. Bibart CH, Ewing GE. Vibrational spectrum of gaseous N2O3. J Chem Phys. 1974;61:1293–9.

    Article  CAS  Google Scholar 

  21. Gasgnier M, Schiffmacher G, Caro P. The formation of rare earth oxides far from equilibrium. J Less Com Met. 1986;116:31–8.

    Article  CAS  Google Scholar 

  22. Wesley McMurray J. Thermodynamic assessment of the Pr–O system. J Am Ceram Soc. 2016;99:1092–9.

    Article  Google Scholar 

  23. Tian H, Guo YN, Zhao L, Tang J, Liu Z. Hexanuclear dysprosium (III) compound incorporating vertex- and edge-sharing Dy3 triangles exhibiting single-molecule-magnet behavior. Inorg Chem. 2011;50:8688–90.

    Article  CAS  Google Scholar 

  24. Giester G, Unfried P, Zak Z. Synthesis and crystal structure of some new rare earth basic nitrates II: [Ln6O(OH)8(H2O)12(NO3)6](NO3)2·xH2O, Ln = Sm, Dy, Er; x (Sm) = 6, x(Dy) = 5, x(Er) = 4. J Alloy Compd. 1997;257:175–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to CNPq and FUNDECT (Brazilian agencies) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Melnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, P., Arkhangelsky, I.V., Nascimento, V.A. et al. Thermal decomposition of praseodymium nitrate hexahydrate Pr(NO3)3·6H2O. J Therm Anal Calorim 133, 929–934 (2018). https://doi.org/10.1007/s10973-018-7177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7177-z

Keywords

Navigation