Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 3, pp 1663–1672 | Cite as

QSPR modeling of decomposition temperature of energetic cocrystals using artificial neural network

  • M. Fathollahi
  • H. Sajady
Article

Abstract

The quantitative structure–property relationship for the decomposition temperature (Td) of energetic cocrystals was investigated. The artificial neural network (ANN) model was employed to predict the Td of cocrystals by using molecular descriptors achieved from Dragon software as input variables. The complete set of 30 cocrystals was randomly divided into a training set of 19, a test set of 6, and a validation set of 5 compounds. Average absolute relative deviations and correlation coefficient (R2) of the ANN model (for the whole dataset) were 1.94% and 0.9784, respectively, indicating satisfactory predictive ability and reliability of the model. Moreover, these data were analyzed by multiple linear regression (MLR) method which showed R2 = 0.7438. The result of MLR proves the necessity of applying ANN models for the prediction of the Td of cocrystals.

Keywords

Energetic cocrystals Decomposition temperature QSPR Artificial neural network Molecular descriptors 

Abbreviations

CL-20

Hexanitrohexaazaisowurtzitane

HMX

1,3,5,7-Tetranitro-1,3,5,7-tetrazocane

TNT

Trinitrotoluene

MTNP

1-Methyl-3,4,5-trinitro-1H-pyrazole

RDX

Cyclotrimethylenetrinitramine

TATB

Triaminotrinitrobenzene

Nap

Naphthalene

Br-Nap

1-Bromonaphthalene

Ant

Anthracene

Br-Ant

9-Bromoanthracene

Phen

Phenanthrene

DMDBT

4,6-Dimethyldibenzothiophene

TTP

Thienothiophene

PDA

Phenylenediamine

DMB

1,4-Dimethoxybenzene

Ant acid

Anthranilic acid

PT

Phenothiazine

BTF

Benzotrifuroxan

DNB

Dinitrobenzene

AP

Ammonium perchlorate

18C6

18-crown-6

B18C6

Benzo-18-crown-6

DB18C6

Dibenzo-18-crown-6

EDNA

Ethylenedinitramine

A1

4,4-bipyridyl

A2

1,2-Di(4-pyridyl)ethane

A3

1,2-Di-4-pyridylethene

A4

1,3-Di(4-pyridyl)propane

A5

4,4′-azopyridine

A6

Pyrazine-N,N′-dioxide

A7

4-Phenylpyridine

A8

Pyridine, 4- (phenylazo)

DNPP

3,6-Dinitropyrazolo[4,3-c]pyrazole

4-AT

4-Amino-1,2,4-triazole

Notes

Acknowledgements

The authors would like to acknowledge support from Malek-Ashtar University of Technology (MUT).

References

  1. 1.
    Aakeroy CB, Salmon DJ. Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm. 2005;7(72):439–48.  https://doi.org/10.1039/B505883J.CrossRefGoogle Scholar
  2. 2.
    Shen JP, Duan XH, Luo QP, Zhou Y, Bao Q, Ma YJ, et al. Preparation and characterization of a novel cocrystal explosive. Cryst Growth Des. 2011;11(5):1759–65.CrossRefGoogle Scholar
  3. 3.
    Xiong S, Chen S, Jin S, Zhang C. Molecular dynamics simulations on dihydroxylammonium 5,5[prime or minute]-bistetrazole-1,1[prime or minute]-diolate/hexanitrohexaazaisowurtzitane cocrystal. RSC Adv. 2016;6(5):4221–6.  https://doi.org/10.1039/C5RA24924D.CrossRefGoogle Scholar
  4. 4.
    Han G, Gou R-J, Zhang S-H, Wu C-L, Zhu S-F. Theoretical investigation into the influence of molar ratio on binding energy, mechanical property and detonation performance of 1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazacyclo octane (HMX)/1-methyl-4, 5-dinitroimidazole (MDNI) cocrystal explosive. Comput Theor Chem. 2017;1109:27–35.CrossRefGoogle Scholar
  5. 5.
    Gao H, Jiang W, Liu J, Hao G, Xiao L, Ke X et al. Synthesis and characterization of a new co-crystal explosive with high energy and good sensitivity. J Energy Mater. 2017;35(4):490–8.Google Scholar
  6. 6.
    Cheng M, Liu X, Luo Q, Duan X, Pei C. Cocrystals of ammonium perchlorate with a series of crown ethers: preparation, structures, and properties. CrystEngComm. 2016;18(43):8487–96.  https://doi.org/10.1039/C6CE01455K.CrossRefGoogle Scholar
  7. 7.
    Ma Q, Jiang T, Chi Y, Chen Y, Wang J, Huang J, et al. A novel multi-nitrogen 2, 4, 6, 8, 10, 12-hexanitrohexaazaisowurtzitane-based energetic co-crystal with 1-methyl-3, 4, 5-trinitropyrazole as a donor: experimental and theoretical investigations of intermolecular interactions. New J Chem. 2017;41(10):4165–72.CrossRefGoogle Scholar
  8. 8.
    Landenberger KB, Matzger AJ. Cocrystal engineering of a prototype energetic material: supramolecular chemistry of 2, 4, 6-trinitrotoluene. Cryst Growth Des. 2010;10(12):5341–7.CrossRefGoogle Scholar
  9. 9.
    Yang Z, Wang Y, Zhou J, Li H, Huang H, Nie F. Preparation and performance of a BTF/DNB cocrystal explosive. Propellants Explos Pyrotech. 2014;39(1):9–13.CrossRefGoogle Scholar
  10. 10.
    Bolton O, Simke LR, Pagoria PF, Matzger AJ. High power explosive with good sensitivity: A 2: 1 cocrystal of CL-20: HMX. Cryst Growth Des. 2012;12(9):4311–4.CrossRefGoogle Scholar
  11. 11.
    Aakeröy CB, Wijethunga TK, Desper J. Crystal engineering of energetic materials: co-crystals of ethylenedinitramine (EDNA) with modified performance and improved chemical stability. Chem A Eur J. 2015;21(31):11029–37.CrossRefGoogle Scholar
  12. 12.
    Lin H, Chen J-F, Zhu S-G, Li H-Z, Huang Y. Synthesis, Characterization, detonation performance, and DFT calculation of HMX/PNO cocrystal explosive. J Energ Mater. 2017;35(1):95–108.CrossRefGoogle Scholar
  13. 13.
    Lin H, Zhu SG, Li HZ, Peng XH. Structure and detonation performance of a novel HMX/LLM-105 cocrystal explosive. J Phys Org Chem. 2013;26(11):898–907.CrossRefGoogle Scholar
  14. 14.
    Zohari N, Keshavarz MH, Dalaei Z. Prediction of decomposition onset temperature and heat of decomposition of organic peroxides using simple approaches. J Therm Anal Calorim. 2016;125(2):887–96.  https://doi.org/10.1007/s10973-016-5451-5.CrossRefGoogle Scholar
  15. 15.
    Wang B, Yi H, Xu K, Wang Q. Prediction of the self-accelerating decomposition temperature of organic peroxides using QSPR models. J Therm Anal Calorim. 2017;128(1):399–406.  https://doi.org/10.1007/s10973-016-5922-8.CrossRefGoogle Scholar
  16. 16.
    Gao Y, Xue Y, Z-G Lǚ, Wang Z, Chen Q, Shi N, et al. Self-accelerating decomposition temperature and quantitative structure–property relationship of organic peroxides. Process Saf Environ Prot. 2015;94(Supplement C):322–8.  https://doi.org/10.1016/j.psep.2014.08.001.CrossRefGoogle Scholar
  17. 17.
    Wang Q, Wang J, Larranaga MD. Simple relationship for predicting onset temperatures of nitro compounds in thermal explosions. J Therm Anal Calorim. 2013;111(2):1033–7.  https://doi.org/10.1007/s10973-012-2377-4.CrossRefGoogle Scholar
  18. 18.
    Xu J, Wang L, Wang L, Shen X, Xu W. QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses. J Comput Chem. 2011;32(15):3241–52.  https://doi.org/10.1002/jcc.21907.CrossRefGoogle Scholar
  19. 19.
    Todeschini R, Consonni V, Mauri A, Pavan M. Dragon for windows (software for molecular descriptor calculations), version 5.4. Talete srl: Milan, Italy; 2006.Google Scholar
  20. 20.
    Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J et al. Gaussian 09, revision D. 01. Gaussian, Inc., Wallingford CT; 2009.Google Scholar
  21. 21.
    Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, et al. Virtual computational chemistry laboratory–design and description. J Comput Aided Mol Des. 2005;19(6):453–63.CrossRefGoogle Scholar
  22. 22.
    Fathollahi M, Sajady H. Prediction of density of energetic cocrystals based on QSPR modeling using artificial neural network. Struct Chem. 2018;  https://doi.org/10.1007/s11224-018-1096-2.Google Scholar
  23. 23.
    Aber S, Daneshvar N, Soroureddin SM, Chabok A, Asadpour-Zeynali K. Study of acid orange 7 removal from aqueous solutions by powdered activated carbon and modeling of experimental results by artificial neural network. Desalination. 2007;211(1–3):87–95.CrossRefGoogle Scholar
  24. 24.
    Anderson SR, am Ende DJ, Salan JS, Samuels P. Preparation of an energetic-energetic cocrystal using resonant acoustic mixing. Propellants Explos Pyrotech. 2014;39(5):637–40.CrossRefGoogle Scholar
  25. 25.
    Zhang J, Parrish DA, Shreeve JM. Curious cases of 3,6-dinitropyrazolo[4,3-c]pyrazole-based energetic cocrystals with high nitrogen content: an alternative to salt formation. Chem Commun. 2015;51(34):7337–40.  https://doi.org/10.1039/C5CC01745A.CrossRefGoogle Scholar
  26. 26.
    Fakhriyan G, Mousavi HZ, Sajjadi SM. One-step determination of lead over a higher linear range by an artificial neural network after air-assisted liquid–liquid microextraction coupled to flame atomic absorption spectrometry. Anal Methods. 2016;8(5):995–1002.CrossRefGoogle Scholar
  27. 27.
    Demuth H, Beale M. Neural network toolbox for use with Matlab—User’S Guide Version 3.0. 1993.Google Scholar
  28. 28.
    Garson GD. Interpreting neural-network connection weights. AI Expert. 1991;6(4):46–51.Google Scholar
  29. 29.
    Goh ATC. Back-propagation neural networks for modeling complex systems. Artif Intell Eng. 1995;9(3):143–51.  https://doi.org/10.1016/0954-1810(94)00011-S.CrossRefGoogle Scholar
  30. 30.
    Moran PA. Notes on continuous stochastic phenomena. Biometrika. 1950;37(1/2):17–23.CrossRefGoogle Scholar
  31. 31.
    Hutchings MG, Gasteiger J. Residual electronegativity-an empirical quantification of polar influences and its application to the proton affinity of amines. Tetrahedron Lett. 1983;24(25):2541–4.CrossRefGoogle Scholar
  32. 32.
    Schuur JH, Selzer P, Gasteiger J. The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J Chem Inf Comput Sci. 1996;36(2):334–44.CrossRefGoogle Scholar
  33. 33.
    Todeschini R, Gramatica P. SD-modelling and prediction by WHIM descriptors. Part 5. Theory development and chemical meaning of WHIM descriptors. Mol Inf. 1997;16(2):113–9.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Faculty of Material and Manufacturing TechnologiesMalek Ashtar University of TechnologyTehranIran

Personalised recommendations