Skip to main content
Log in

Transient thermal response of phase change material embedded with graphene nanoplatelets in an energy storage unit

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Throughout this study, a systematic investigation was carried out on heating performances of phase change materials doped by graphene nanoplatelets (GNP) in an energy storage unit. The composite samples were prepared by dispersing GNP into organic PCM via melting temperatures between 61 and 66 °C and at various mass fractions that included 3, 5 and 7%. A linear increase in thermal conductivity of the GNP/PCM composites was observed as the GNP mass fraction increased. With respect to PCM, thermal conductivity of GNP/PCM composites, mixed with GNP at 3, 5 and 7% mass fractions, increased by 105, 181 and 253%, respectively, at 10 °C. On the other hand, a decrease in latent heat values occurred in the composites, by 2.2, 8.6 and 15.6%, respectively. Due to the increase in the doped GNP mass fraction, the temperature difference between the closest and farthest points to the heat source in the energy storage unit reduced significantly when compared to that of the PCM. When delaying durations of the closest point to the heat source were compared, due to the doped GNP fraction, it was determined that the 7% GNP/PCM composite extended the effective use of energy storage unit by 32 min compared to the PCM. Finally, after 50 heating/cooling cycles it also retained stability of GNP nanoparticles in the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Oró E, de Garcia A, Castell A, Farid MM, Cabeza LF. Review on phase change materials (PCMs) for cold thermal storage applications. Appl Energy. 2012;99:513–33.

    Article  Google Scholar 

  2. Zhou D, Zhao CY, Tian Y. Review on thermal energy storage with phase change material (PCMs) in building applications. Appl Energy. 2012;92:593–605.

    Article  CAS  Google Scholar 

  3. Sarier N, Onder E. Organic phase change materials and their textile applications: an overview. Thermochim Acta. 2012;540:7–60.

    Article  CAS  Google Scholar 

  4. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13:318–45.

    Article  CAS  Google Scholar 

  5. Stritih U. An experimental study of enhanced heat transfer in rectangular PCM thermal storage. Int J Heat Mass Transf. 2004;47:2841–7.

    Article  CAS  Google Scholar 

  6. Agyenim F, Eames P, Smyth M. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Sol Energy. 2009;83:1509–20.

    Article  CAS  Google Scholar 

  7. Zhang P, Mang Z, Zhu H, Yanling W, Peng S. Experimental and numerical study of heat transfer characteristics of a paraffin/metal foam composite PCM. Energy Proc. 2017;75:3091–7.

    Article  Google Scholar 

  8. Xiao M, Feng B, Gong KC. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers Manag. 2002;43:103–8.

    Article  CAS  Google Scholar 

  9. Wang J, Xie H, Xin Z, Li Z, Li Y, Chen L. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol Energy. 2010;84:339–44.

    Article  CAS  Google Scholar 

  10. Elgafy A, Lafdi K. Effect of carbon nanofiber additives on thermal behaviour of phase change materials. Carbon. 2005;43:3067–74.

    Article  CAS  Google Scholar 

  11. Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF, Zhang L. Effects of MWCNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. J Therm Anal Calorim. 2009;95:507–12.

    Article  CAS  Google Scholar 

  12. Kumerasan V, Velraj R, Das SK. The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification. Heat Mass Transf. 2012;48:345–1355.

    Google Scholar 

  13. Zeng JL, Liu YY, Cao ZX, Zhang J, Zhang ZH, Sun LX, Xu F. Thermal conductivity enhancement of MWCNTs on the PANI/tetradecanol form-stable PCM. J Therm Anal Calorim. 2008;91:443–6.

    Article  CAS  Google Scholar 

  14. Yu ZT, Fang X, Fan LW, Wang X, Xiao YQ, Zeng Y, Xu X, Hu YC, Cen KF. Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes. Carbon. 2013;53:277–85.

    Article  CAS  Google Scholar 

  15. Wang J, Xie H, Xin Z, Li Y. Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes. Carbon. 2010;48:3979–86.

    Article  CAS  Google Scholar 

  16. Teng TP, Yu CC. The effect on heating rate for phase change materials containing MWCNTs. Int J Chem Eng Appl. 2012;3:340–2.

    CAS  Google Scholar 

  17. Shaikh S, Lafdi K, Hallinan K. Carbon nanoadditives to enhance latent energy storage of phase change materials. J Appl Phys. 2008;103:094302.

    Article  Google Scholar 

  18. Wu SY, Tong X, Nie CD, Peng DQ, Gong SG, Wang ZQ. The effects of various carbon nanofillers on thermal properties of paraffin for energy storage applications. J Therm Anal Calorim. 2016;124:181–8.

    Article  CAS  Google Scholar 

  19. Kim S, Drzal TL. High latent heat storage and high thermal conductivity phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells. 2009;93:136–42.

    Article  CAS  Google Scholar 

  20. Xiang J, Drzal LT. Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax based phase change material. Sol Energy Mater Sol Cells. 2011;95:1811–8.

    Article  CAS  Google Scholar 

  21. Li M. A nano-graphite/paraffin phase change material with high thermal conductivity. Appl Energy. 2013;106:25–30.

    Article  CAS  Google Scholar 

  22. Yavari F, Fard HR, Pashayi K, Rafiee MA, Zamiri A, Yu Z, Ozisik R, Borca-Tascius T, Koratkar N. Enhanced thermal conductivity in nanostructured phase change composites due to low concentration graphene additives. J Phys Chem. 2011;115:8753–8.

    CAS  Google Scholar 

  23. Shi JN, Ger MD, Liu YM, Fan YC, Wen NT, Lin CK, Pu NW. Improving the thermal conductivity and shape stabilization of phase change materials using nanographite additives. Carbon. 2013;51:365–72.

    Article  CAS  Google Scholar 

  24. Chen YJ, Nguyen DD, Shen MY, Yip MC, Tai NH. Thermal characterization of the graphite nanosheets reinforced paraffin phase change composites. Compos A. 2013;44:40–6.

    Article  CAS  Google Scholar 

  25. Sun Q, Yuan Y, Zhang H, Cao X, Sun L. Thermal properties of polyethylene glycol/carbon microsphere composite as a novel phase change material. J Therm Anal Calorim. 2017;130:1741–9.

    Article  CAS  Google Scholar 

  26. Chintakrinda K, Randy DW, Fleischer AS. A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes. Int J Therm Sci. 2011;50:1639–47.

    Article  CAS  Google Scholar 

  27. Fleischer AS, Chintakrinda K, Randy DW, Bessel CA. Transient Thermal Management using phase change materials with embedded graphite nanofibers for systems with high power requirements. In: Thermal and thermomechanical phenomena in electronic systems, ITHERM; 2011. p. 561–6.

  28. Sanusi O, Warzoha R, Fleischer AS. Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers. Int J Heat Mass Transf. 2011;54:4429–36.

    Article  CAS  Google Scholar 

  29. Yuan Y, Li T, Zhang N, Cao X, Yang X. Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application. J Therm Anal Calorim. 2016;124:881–8.

    Article  CAS  Google Scholar 

  30. Ye WB. Enhanced latent heat thermal energy storage in the double tubes using fins. J Therm Anal Calorim. 2017;128:533–40.

    Article  CAS  Google Scholar 

  31. Hadiya JP, Kumar A, Shukla N. Experimental thermal behaviour response of paraffin wax as storage unit. J Therm Anal Calorim. 2016;124:1511–8.

    Article  CAS  Google Scholar 

  32. Lorwanishpaisarn N, Kasemsiri P, Posi P, Chindaprasirt P. Characterization of paraffin/ultrasonic-treated diatomite for use as phase change material in thermal energy storage of buildings. J Therm Anal Calorim. 2017;128:1293–303.

    Article  CAS  Google Scholar 

  33. Temel UN, Kurtulus S, Parlak M, Yapici K. Size-dependent thermal properties of multi-walled carbon nanotubes embedded in phase change materials. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-6966-8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the support of ASELSAN INC under Grant No. REHIS-IA-2014-010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerim Yapici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temel, U.N., Somek, K., Parlak, M. et al. Transient thermal response of phase change material embedded with graphene nanoplatelets in an energy storage unit. J Therm Anal Calorim 133, 907–918 (2018). https://doi.org/10.1007/s10973-018-7161-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7161-7

Keywords

Navigation