Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 247–254 | Cite as

Study of water in Ca-montmorillonite by thermal analysis and positron annihilation lifetime spectroscopy

  • Igor Maťko
  • Ondrej Šauša
  • Katarína Čechová
  • Karol Jesenák
Article

Abstract

The aim of this study is to characterize adsorbed liquid in montmorillonite structure for different levels of adsorption by both thermoanalytical and microstructural methods. Montmorillonite of Ca type is used for the analysis. Water desorption process occurring typically between 50 and 180 °C is analysed in details by thermogravimetric analysis. Thermal response of adsorbed water for the selected steps of desorption process is studied by differential scanning calorimetry. Corresponding characterization of free volume is performed by positron annihilation lifetime spectroscopy. An attempt to determine a correlation of characterization method results is provided.

Keywords

Montmorillonite Thermogravimetric analysis DSC Positron annihilation lifetime spectroscopy 

Notes

Acknowledgements

Work was partially supported by projects VEGA 2/0127/17, VEGA 2/0157/17, APVV-16-0369 and APVV-15-0621.

References

  1. 1.
    Kader MA, Kim K, Lee Y-S, Nah C. Preparation and properties of nitrile rubber/montmorillonite nanocomposites via latex blending. J Mater Sci. 2006;41:7341–52.CrossRefGoogle Scholar
  2. 2.
    Lloyd L. Handbook of industrial catalysts. New York: Springer; 2011.CrossRefGoogle Scholar
  3. 3.
    Riikonen J, Salonen J, Lehto VP. Utilising thermoporometry to obtain new insights into nanostructured materials: review part 1. J Therm Anal Calorim. 2011;105:811–21.CrossRefGoogle Scholar
  4. 4.
    Riikonen J, Salonen J, Lehto VP. Utilising thermoporometry to obtain new insights into nanostructured materials: review part 2. J Therm Anal Calorim. 2011;105:823–30.CrossRefGoogle Scholar
  5. 5.
    Landry MR. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta. 2005;433:27–50.CrossRefGoogle Scholar
  6. 6.
    Illeková E, Miklošovičová M, Šauša O, Berek D. Solidification and melting of cetane confined in the nanopores of silica gel. J Therm Anal Calorim. 2012;108:497–503.CrossRefGoogle Scholar
  7. 7.
    Illeková E, Krištiak J, Macová E, Maťko I, Šauša O. Rearrangement of hexadecane molecules confined in the nanopores of a controlled I pore glass using positron annihilation and differential scanning calorimetry. J Therm Anal Calorim. 2013;113:1187–96.CrossRefGoogle Scholar
  8. 8.
    Iskrová M, Majerník V, Illeková E, Šauša O, Berek D, Krištiak J. Free volume seen by positronium in bulk and confined molecular liquid. Mat Sci Forum. 2009;607:235–7.CrossRefGoogle Scholar
  9. 9.
    Šauša O, Illeková E, Krištiak J, Berek D, Macová E. PALS and DSC study of partially filled nanopores by E hexadecane. J Phys Conf Ser. 2013;443:012059.CrossRefGoogle Scholar
  10. 10.
    Illeková E, Macová E, Majerník V, Maťko I, Šauša O. Anomalous thermal expansion of thin cetane layer solidified at the inner surface of confining nanoporous silica gel. J Therm Anal Calorim. 2014;116:753–8.CrossRefGoogle Scholar
  11. 11.
    Maťko I, Šauša O, Macová E, Berek D. Combined study of confined water in controlled pore glasses by differential scanning calorimetry and positron annihilation lifetime spectroscopy. J Therm Anal Calorim. 2015;121:163–8.CrossRefGoogle Scholar
  12. 12.
    Tao SJ. Positronium annihilation in molecular substances. J Chem Phys. 1972;56:5499–510.CrossRefGoogle Scholar
  13. 13.
    Eldrup M, Lightbody D, Sherwood JN. The temperature dependence of positron lifetime in solid pivalic acid. Chem Phys. 1981;63:51–8.CrossRefGoogle Scholar
  14. 14.
    Zaleski, R. EELViS. http://eelvis.sourceforge.net (2009). Accessed 15 Jun 2011.
  15. 15.
    Ferrell RA. Long lifetime of positronium in liquid helium. Phys Rev. 1957;108:167.CrossRefGoogle Scholar
  16. 16.
    Goworek T. Positronium as a probe of small free volumes in crystals, polymers and porous media. Ann Univ Maria Curie-Sklodowska, Lublin-Polonia. 2014;69:1–110.Google Scholar
  17. 17.
    Gonzáles Sánchez F, Jurányi F, Gimmi T, Van Loon L, Seydel T, Unruh T. Dynamics of supercooled water in highly compacted clays studied by neutron scattering. J Phys Condens Matter. 2008.  https://doi.org/10.1088/0953-8984/20/41/415102.Google Scholar
  18. 18.
    Jesenák K. Laboratory device for sedimentation separation of powders. Ceramics. 1994;38:35–6.Google Scholar
  19. 19.
    Jesenák K, Kuchta Ľ, Guller L, Fúsková J. Physico-chemical properties of Bentonite “Stará Kremnička – Jelšový potok” I: particle size distribution. Mineralia Slovaca. 1997;29:439–42.Google Scholar
  20. 20.
    Jesenák K, Fajnor V. Distribution of trace elements in bentonite Stará Kremnička – Jelšový potok. Mineralia Slovaca. 1995;27:221–4.Google Scholar
  21. 21.
    Kansy J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Method A. 1996;374:235–44.CrossRefGoogle Scholar
  22. 22.
    Brun M, Lallemand A, Quinson J, Eyraud C. A new method for simultaneous determination of size and shape of pores: the thermoporometry. Thermochim Acta. 1977;21:59–88.CrossRefGoogle Scholar
  23. 23.
    Morishige K, Yasunaga H, Denoyel R, Wernert V. Pore-blocking-controlled freezing of water in Cagelike Pores of KIT-5. J Phys Chem C. 2007;111:9488–95.CrossRefGoogle Scholar
  24. 24.
    Janssen AH, Talsma H, van Steenbergen MJ, de Jong KP. Homogeneous nucleation of water in mesoporous zeolite cavities. Langmuir. 2004;20:41–5.CrossRefGoogle Scholar
  25. 25.
    Pruppacher HRJ. A new look at homogeneous ice nucleation in supercooled water drops. Atmos Sci. 1995;52:1924–33.CrossRefGoogle Scholar
  26. 26.
    Fajnor VŠ, Jesenák K. Differential thermal analysis of montmorillonite. J Therm Anal. 1996;46:489–93.CrossRefGoogle Scholar
  27. 27.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  28. 28.
    Consolati G, Natali-Sora I, Pelosato R, Quasso F. Investigation of cation-exchanged montmorillonites by combined X-ray diffraction and positron annihilation lifetime spectroscopy. J Appl Phys. 2002;91:1928–32.CrossRefGoogle Scholar
  29. 29.
    Stepanov SV, Zvezhinski DS, Duplâtre G, Byakov VM, Batskikh YY, Stepanov PS. Incorporation of the magnetic quenching effect into the blob model of Ps formation. Finite sized Ps in a potential well. Mat Sci Forum. 2011;666:109–14.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of Inorganic Chemistry, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia

Personalised recommendations