Skip to main content
Log in

Sol–gel synthesis and thermal behavior of bioactive ferrous citrate–silica hybrid materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Imbalance of the iron level in the body causes several diseases. In particular, the low level of iron, during pregnancy, is responsible for the iron deficiency anemia, and even of neurodegenerative diseases. Although the treatment of iron deficiency anemia with oral iron supplements has been known, this problem still afflicts many people. The aim of this work was the development of a system able to release ferrous ions in a controlled manner. Controlled drug release for medical applications, indeed, appears to be a very interesting alternative to a systemic therapy because it is assurance of treatment continuity and drug stability and optimizes drug absorption. For this purpose, ferrous citrate (Fe(II)C) was synthesized by a redox reaction between iron powder and citric acid. Fourier transform infrared spectroscopy (FTIR), 1,10-phenanthroline and sodium thiocyanate colorimetric assays confirmed that only Fe(II)C was obtained by redox reaction. Afterward, obtained Fe(II)C was embedded within a SiO2 matrix in different mass percentage, by means of a sol–gel route. FTIR spectroscopy and simultaneous thermogravimetry/first-order derivative of thermogravimetry were used to confirm the Fe(II)C presence in the silica matrix and to investigate the thermal behavior of the sol–gel materials, respectively. The bioactivity test carried out by soaking the synthesized drug delivery systems in a simulated body fluid showed that the biological properties of the silica matrix are not modified by the presence of Fe(II)C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cairo G, Recalcati S, Pietrangelo A, Minotti G. The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage1,2. Free Radic Biol Med. 2002;32(12):1237–43. https://doi.org/10.1016/S0891-5849(02)00825-0.

    Article  CAS  PubMed  Google Scholar 

  2. Cairo G, Pietrangelo A. Iron regulatory proteins in pathobiology. Biochem J. 2000;352(Pt 2):241–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219(1):1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Allen LH. Anemia and iron deficiency: effects on pregnancy outcome. Am J Clin Nutr. 2000;71(5):1280s–4s.

    Article  CAS  PubMed  Google Scholar 

  5. Puntarulo S. Iron, oxidative stress and human health. Mol Asp Med. 2005;26(4):299–312. https://doi.org/10.1016/j.mam.2005.07.001.

    Article  CAS  Google Scholar 

  6. Stoltzfus RJ. Iron deficiency: global prevalence and consequences. Food Nutr Bull. 2003;24(4_suppl2):S99–103. https://doi.org/10.1177/15648265030244s206.

    Article  PubMed  Google Scholar 

  7. Somayaji BV, Jariwala U, Jayachandran P, Vidyalakshmi K, Dudhani RV. Evaluation of antimicrobial efficacy and release pattern of tetracycline and metronidazole using a local delivery system. J Periodontol. 1998;69(4):409–13. https://doi.org/10.1902/jop.1998.69.4.409.

    Article  CAS  PubMed  Google Scholar 

  8. Brinker C, Scherer G. Sol-gel science: the physics and chemistry of sol-gel processing. San Diego: Academic press; 1989.

    Google Scholar 

  9. Catauro M, Pagliuca C, Lisi L, Ruoppolo G. Synthesis of alkoxide-derived V-Nb catalysts prepared by sol-gel route. Thermochim Acta. 2002;381(1):65–72. https://doi.org/10.1016/s0040-6031(01)00646-3.

    Article  CAS  Google Scholar 

  10. Gupta R, Kumar A. Bioactive materials for biomedical applications using sol-gel technology. Biomed Mater. 2008;3(3):034005.

    Article  PubMed  Google Scholar 

  11. Martin RA, Yue S, Hanna JV, Lee PD, Newport RJ, Smith ME, et al. Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration. Philos Trans R Soc A Math Phys Eng Sci. 1963;2012(370):1422–43. https://doi.org/10.1098/rsta.2011.0308.

    Article  CAS  Google Scholar 

  12. Vallet-Regí M. Ceramics for medical applications. J Chem Soc Dalton Trans. 2001;2:97–108.

    Article  Google Scholar 

  13. Catauro M, Bollino F, Papale F. Biocompatibility improvement of titanium implants by coating with hybrid materials synthesized by sol-gel technique. J Biomed Mater Res Part A. 2014;102(12):4473–9. https://doi.org/10.1002/jbm.a.35116.

    Article  CAS  Google Scholar 

  14. Catauro M, Bollino F, Papale F, Pacifico S, Galasso S, Ferrara C, et al. Synthesis of zirconia/polyethylene glycol hybrid materials by sol-gel processing and connections between structure and release kinetic of indomethacin. Drug Deliv. 2014;21(8):595–604. https://doi.org/10.3109/10717544.2013.865816.

    Article  CAS  PubMed  Google Scholar 

  15. Bollino F, Armenia E, Tranquillo E. Zirconia/hydroxyapatite composites synthesized via sol-gel: Influence of hydroxyapatite content and heating on their biological properties. Materials. 2017. https://doi.org/10.3390/ma10070757.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Catauro M, Bollino F, Papale F, Piccolella S, Pacifico S. Sol-gel synthesis and characterization of SiO2/PCL hybrid materials containing quercetin as new materials for antioxidant implants. Mater Sci Eng C. 2016;58:945–52. https://doi.org/10.1016/j.msec.2015.09.054.

    Article  CAS  Google Scholar 

  17. Vallet-Regi M, Balas F. Silica materials for medical applications. Open Biomed Eng J. 2008;2:1–9. https://doi.org/10.2174/1874120700802010001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Catauro M, Bollino F, Papale F, Vecchio Ciprioti S. Investigation on bioactivity, biocompatibility, thermal behavior and antibacterial properties of calcium silicate glass coatings containing Ag. J Non-Cryst Solids. 2015;422:16–22. https://doi.org/10.1016/j.jnoncrysol.2015.04.037.

    Article  CAS  Google Scholar 

  19. Catauro M, Laudisio G, Costantini A, Fresa R, Branda F. Low temperature synthesis, structure and bioactivity of 2CaO·3SiO2 glass. J Sol-Gel Sci Technol. 1997;10(2):231–7.

    Article  CAS  Google Scholar 

  20. Catauro M, Bollino F, Papale F, Gallicchio M, Pacifico S. Synthesis and chemical characterization of new silica polyethylene glycol hybrid nanocomposite materials for controlled drug delivery. J Drug Deliv Sci Technol. 2014;24(4):320–5. https://doi.org/10.1016/s1773-2247(14)50069-x.

    Article  CAS  Google Scholar 

  21. Blanco I. Polyhedral oligomeric silsesquioxanes (POSS)s in medicine. J Nanomed. 2018;1(1):1002.

    Article  Google Scholar 

  22. Russo V, Tesser R, Trifuoggi M, Giugni M, Di Serio M. A dynamic intraparticle model for fluid–solid adsorption kinetics. Comput Chem Eng. 2015;74:66–74. https://doi.org/10.1016/j.compchemeng.2015.01.001.

    Article  CAS  Google Scholar 

  23. Midha S, Kim TB, van den Bergh W, Lee PD, Jones JR, Mitchell CA. Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Acta Biomater. 2013;9(11):9169–82. https://doi.org/10.1016/j.actbio.2013.07.014.

    Article  CAS  PubMed  Google Scholar 

  24. Yamashita K, Mizuiri S, Nishizawa Y, Kenichiro S, Doi S, Masaki T. Oral iron supplementation with sodium ferrous citrate reduces the serum intact and c-terminal fibroblast growth factor 23 levels of maintenance haemodialysis patients. Nephrology. 2017;22(12):947–53. https://doi.org/10.1111/nep.12909.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao M, Zhu P, Fujino M, Nishio Y, Chen J, Ito H, et al. 5-Aminolevulinic acid with sodium ferrous citrate induces autophagy and protects cardiomyocytes from hypoxia-induced cellular injury through MAPK-Nrf-2-HO-1 signaling cascade. Biochem Biophys Res Commun. 2016;479(4):663–9. https://doi.org/10.1016/j.bbrc.2016.09.156.

    Article  CAS  PubMed  Google Scholar 

  26. Catauro M, Bollino F, Renella RA, Papale F. Sol–gel synthesis of SiO2–CaO–P2O5 glasses: influence of the heat treatment on their bioactivity and biocompatibility. Ceram Int. 2015;41(10, Part A):12578–88. https://doi.org/10.1016/j.ceramint.2015.06.075.

    Article  CAS  Google Scholar 

  27. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–15. https://doi.org/10.1016/j.biomaterials.2006.01.017.

    Article  CAS  PubMed  Google Scholar 

  28. Bichara LC, Lanús HE, Ferrer EG, et al. Vibrational study and force field of the citric acid dimer based on the SQM methodology. Adv Phys Chem. 2011. https://doi.org/10.1155/2011/347072.

    Article  Google Scholar 

  29. Coates J. Interpretation of infrared spectra, a practical approach. encyclopedia of analytical chemistry. Hoboken: Wiley; 2006.

    Google Scholar 

  30. Tsimbler SM, Shevchenko LL, Grigor’eva VV. The IR absorption spectra of the tartrate and citrate complexes of nickel, cobalt, and iron. J Appl Spectrosc. 1969;11(3):1096–101. https://doi.org/10.1007/bf00607851.

    Article  Google Scholar 

  31. Adeogun MJ, Hay JN. Structure control in sol-gel silica synthesis using ionene polymers. 2: evidence from spectroscopic analysis. J Sol-Gel Sci Technol. 2001;20:119–28.

    Article  CAS  Google Scholar 

  32. Innocenzi P. Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids. 2003;316:309–19. https://doi.org/10.1016/s0022-3093(02)01637-x.

    Article  CAS  Google Scholar 

  33. Catauro M, Bollino F, Mozzati MC, Ferrara C, Mustarelli P. Structure and magnetic properties of SiO2/PCL novel sol-gel organic-inorganic hybrid materials. J Solid State Chem. 2013;203:92–9. https://doi.org/10.1016/j.jssc.2013.04.014.

    Article  CAS  Google Scholar 

  34. Blanco I, Bottino FA, Abate L. Influence of n-alkyl substituents on the thermal behaviour of polyhedral oligomeric silsesquioxanes (POSSs) with different cage’s periphery. Thermochim Acta. 2016;623:50–7. https://doi.org/10.1016/j.tca.2015.11.013.

    Article  CAS  Google Scholar 

  35. Nedelec JM, Hench LL. Ab initio molecular orbital calculations on silica rings. J Non-Cryst Solids. 1999;255:163–70. https://doi.org/10.1016/s0022-3093(99)00367-1.

    Article  CAS  Google Scholar 

  36. Yoshino H, Kamiya K, Nasu H. IR study on the structural evolution of sol-gel-derived silica gels in the early stage of conversion to glasses. J Non-Cryst Solids. 1990;126:68–78. https://doi.org/10.1016/0022-3093(90)91024-l.

    Article  CAS  Google Scholar 

  37. Chen Y-C, Liu C-P, Yang C-K, Huang B-Y, Liu C-Y. Preparation and release properties of sol-gel encapsulated proteins. J Anal Sci Methods Instrum. 2013;3:11–6. https://doi.org/10.4236/jasmi.2013.33a002.

    Article  Google Scholar 

  38. Simon V, Eniu D, Gritco A, Simon S. Thermal and spectroscopic investigation of sol-gel derived aluminosilicate bioglass matrices. J Optoelectron Adv Mater. 2007;9:3368–71.

    CAS  Google Scholar 

  39. Georgieva I, Danchova N, Gutzov S, Trendafilova N. DFT modeling, UV-Vis and IR spectroscopic study of acetylacetone-modified zirconia sol-gel materials. J Mol Model. 2012;18:2409–22. https://doi.org/10.1007/s00894-011-1257-3.

    Article  CAS  PubMed  Google Scholar 

  40. Vecchio Ciprioti S, Catauro M. Synthesis, structural and thermal behavior study of four Ca-containing silicate gel-glasses: activation energies of their dehydration and dehydroxylation processes. J Therm Anal Calorim. 2016;123(3):2091–101. https://doi.org/10.1007/s10973-015-4729-3.

    Article  CAS  Google Scholar 

  41. Vecchio Ciprioti S, Catauro M, Bollino F, Tuffi R. Thermal behavior and dehydration kinetic study of SiO2/PEG hybrid gel glasses. Polym Eng Sci. 2017;57(6):606–12. https://doi.org/10.1002/pen.24561.

    Article  CAS  Google Scholar 

  42. Wyrzykowski D, Hebanowska E, Nowak-Wiczk G, Makowski M, Chmurzyński L. Thermal behaviour of citric acid and isomeric aconitic acids. J Therm Anal Calorim. 2011;104(2):731–5. https://doi.org/10.1007/s10973-010-1015-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelina Catauro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catauro, M., Naviglio, D., Risoluti, R. et al. Sol–gel synthesis and thermal behavior of bioactive ferrous citrate–silica hybrid materials. J Therm Anal Calorim 133, 1085–1092 (2018). https://doi.org/10.1007/s10973-018-7137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7137-7

Keywords

Navigation