Skip to main content
Log in

Analytical investigation of simultaneous effects of convergent section heating of Laval nozzle, steam inlet condition, and nozzle geometry on condensation shock

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Rapid expansion and supercooling of dry vapor in low-pressure steam turbines trigger nucleation phenomenon. Subsequently, following the occurrence of vapor condensation, a vapor–liquid two-phase flow is established. Entropy generation mainly by condensation shock, blade erosion, and ultimately, destruction of equipment and efficiency reduction are among adverse effects of vapor condensation, which should be either attenuated or controlled. In the present research, which is a continuation to the research performed by original authors, a one-dimensional analytical Eulerian–Lagrangian model is used to apply convergent section heating to different supersonic nozzles under various inlet conditions. The results indicate that the flow response to the heating is well dependent on the intensity of condensation shock or inlet conditions. In order to compensate for the mass flow rate resulted from the convergent section heating, effects of simultaneous reduction of inlet stagnation temperature and convergent section heating were investigated. Finally, it was found that, maintaining constant mass flow rate, simultaneous reduction of inlet stagnation temperature and convergent section heating cannot attenuate the condensation shock significantly. Therefore, the best approach to compensate for the reduction in the mass flow rate due to convergent section heating is to simultaneously increase inlet stagnation pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Peak nucleation zone.

Abbreviations

A :

Area

B :

Virial condensation coefficient

\(C_{\text{P}}\) :

Specific heat at constant pressure

\(D_{\text{e}}\) :

Equivalent diameter

f :

Friction factor

h :

Enthalpy

\(\Delta G\) :

Change in Gibbs free energy

J :

Rate of formation of critical droplets per unit volume and time

L :

Convergent length

La:

Latent heat

M :

Total mass flow rate

m :

Mass of droplet

Ma :

Mach number

N :

Number of droplets per unit volume

P :

Vapor pressure

\(P_{\text{S}} \left( {T_{\text{G}} } \right)\) :

Saturation pressure at \(T_{\text{G}}\)

\(q_{\text{C}}\) :

Condensation coefficient

\(\dot{q}\) :

Volumetric heat transfer rate (W m−3)

\(\dot{Q}\) :

Total heat transfer rate (W)

R :

Gas constant for water vapor

\(\bar{R}_{\text{Sa}}\) :

Sauter mean radius

\(\bar{R}_{\text{Su}}\) :

Surface-averaged radius

\(\bar{R}_{\text{V}}\) :

Volume-averaged radius

r :

Radius of droplet

\(S_{\text{L}}\) :

Total surface of droplets per unit volume

T :

Temperature

t :

Time

\(T_{\text{S}} \left( P \right)\) :

Saturation temperature at P

U :

Velocity

\(V_{\text{L}}\) :

Total volume of droplets per unit volume

x :

Distance along nozzle axis

X, Y :

Functions of temperature and density in equation of state

α :

Heat transfer coefficient

ρ :

Density

λ :

Coefficient of thermal conductivity

\(\sigma_{\text{r}}\) :

Surface tension of droplet

0:

Stagnation condition

G :

Vapor phase

i :

Inlet condition

L :

Liquid phase

s :

Saturation

*:

Critical droplet

References

  1. Zeng JL, Zhou L, Zhang YF, Sun SL, Chen YH, Shu L, Yu LP, Zhu L, Song LB, Cao Z. Effects of some nucleating agents on the supercooling of erythritol to be applied as phase change material. J Therm Anal Calorim. 2017;129(3):1291–9.

    Article  CAS  Google Scholar 

  2. Wyslouzil BE, Wölk J. Overview: homogeneous nucleation from the vapor phase—the experimental science. J Chem Phys. 2016;145(21):211702.

    Article  Google Scholar 

  3. Mahpeykar MR, Amiri Rad E, Teymourtash AR. Analytical investigation into simultaneous effects of friction and heating on a supersonic nucleating Laval nozzle. Sci Iran Trans B Mech Eng. 2014;21(5):1700.

    Google Scholar 

  4. Mashmoushy H, Mahpeykar MR, Bakhtar F. Studies of nucleating and wet steam flows in two-dimensional cascades. Proc Inst Mech Eng Part C J Mech Eng Sci. 2004;218(8):843–58.

    Article  CAS  Google Scholar 

  5. Yousefi Rad E, Mahpeykar MR. A novel hybrid approach for numerical modeling of the nucleating flow in Laval nozzle and transonic steam turbine blades. Energies. 2017;10(9):1285.

    Article  Google Scholar 

  6. Young JB. Two-dimensional, nonequilibrium, wet-steam calculations for nozzles and turbine cascades. ASME J Turbomach. 1992;114(3):569–79.

    Article  Google Scholar 

  7. White AJ. A comparison of modelling methods for polydispersed wet-steam flow. Int J Numer Meth Eng. 2003;57(6):819–34.

    Article  Google Scholar 

  8. Jiang W, Liu Z, Liu H, Pang H, Bao L. Influences of friction drag on spontaneous condensation in water vapor supersonic flows. Sci China Ser E Technol Sci. 2009;52(9):2653–9.

    Article  Google Scholar 

  9. Jiang W, Bian J, Liu Y, Liu Z, Teng L, Geng G. Investigation of flow characteristics and the condensation mechanism of ternary mixture in a supersonic nozzle. J Nat Gas Sci Eng. 2016;31(34):1054–61.

    Article  Google Scholar 

  10. Lakzian E, Shaabani S. Analytical investigation of coalescence effects on the exergy loss in a spontaneously condensing wet-steam flow. Int J Exergy. 2015;16(4):383–403.

    Article  CAS  Google Scholar 

  11. Bakhtar F, Young JB. A comparison between theoretical calculations and experimental measurements of droplet sizes in nucleating steam flows. Trans Inst Fluid Flow Mach. 1976;16(70):259–71.

    Google Scholar 

  12. Amiri Rad E, Mahpeykar MR, Teymourtash AR. Analytic investigation of the effects of condensation shock on turbulent boundary layer parameters of nucleating flow in a supersonic convergent-divergent nozzle. Sci Iran Trans B Mech Eng. 2014;21(5):1709.

    Google Scholar 

  13. Samaké O, Galanis N, Sorin M. On the design and corresponding performance of steam jet ejectors. Desalination. 2016;1(381):15–25.

    Article  Google Scholar 

  14. Abdellaoui EY, Kairouani LK. Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle. Archives Thermodyn. 2017;38(1):39–62.

    Article  Google Scholar 

  15. Mahpeykar MR, Teymourtash AR, Amiri Rad E. Reducing entropy generation by volumetric heat transfer in a supersonic two-phase steam flow in a Laval nozzle. Int J Exergy. 2011;9(1):21–39.

    Article  Google Scholar 

  16. Amiri Rad E, Mahpeykar MR, Teymourtash AR. Evaluation of simultaneous effects of inlet stagnation pressure and heat transfer on condensing water-vapor flow in a supersonic Laval nozzle. Sci Iran. 2013;20(1):141–51.

    Article  Google Scholar 

  17. Halama J, Fort J. Homogeneous nucleation of steam in convergent-divergent nozzle. Eng Mech. 2014;21(3):145–50.

    Google Scholar 

  18. Farag MS, Terhy AA, Askary WA, Hegazy AS. Numerical study on condensation process of steam flow in nozzles. Int J Adv Technol. 2015;6(140):2.

    Google Scholar 

  19. Mahpeykar MR, Teymourtash AR, Amiri Rad E. Theoretical investigation of effects of local cooling of a nozzle divergent section for controlling condensation shock in a supersonic two-phase flow of steam. Meccanica. 2013;48(4):815–27.

    Article  Google Scholar 

  20. Asadov SM, Mustafaeva SN, Mammadov AN. Thermodynamic assessment of phase diagram and concentration–temperature dependences of properties of solid solutions of the GaS–GaSe system. J Therm Anal Calorim. 2018:1–7. https://doi.org/10.1007/s10973-018-6967-7.

  21. Furusawa T, Yamamoto S. Mathematical modeling and computation of high-pressure steam condensation in a transonic flow. J Fluid Sci Tech. 2017;12(1):JFST0002.

    Article  Google Scholar 

  22. Senoo S, White AJ. Numerical simulations of unsteady wet steam flows with non-equilibrium condensation in the nozzles and the steam turbine. ASME paper no. FEDSM-2006-98202. 2006.

  23. Madhurambal G, Mariappan M, Selvarajan G, Mojumdar SC. Investigation on nucleation kinetics of urea–thiourea mixed crystal (UTMC) in methanol and absolute alcohol. J Therm Anal Calorim. 2015;119(2):931–8.

    Article  CAS  Google Scholar 

  24. Bakhtar F, Young JB, White AJ, Simpson DA. Classical nucleation theory and its application to condensing steam flow calculations. Proc Inst Mech Eng Part C J Mech Eng Sci. 2005;219(12):1315–33.

    Article  Google Scholar 

  25. Abadi SNR, Ahmadpour A, Abadi SM, Meyer JP. CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows. Appl Therm Eng. 2017;5(112):1575–89.

    Article  Google Scholar 

  26. Henderson DW. Experimental analysis of non-isothermal transformations involving nucleation and growth. J Therm Anal Calorim. 1979;15(2):325–31.

    Article  CAS  Google Scholar 

  27. Abadi SNR, Kouhikamali R. CFD-aided mathematical modeling of thermal vapor compressors in multiple effects distillation units. Appl Math Model. 2016;40(15):6850–68.

    Article  Google Scholar 

  28. Hale BN. Temperature dependence of homogeneous nucleation rates for water: near equivalence of the empirical fit of Wölk and Strey, and the scaled nucleation model. J Chem Phys. 2005;122(20):204509.

    Article  Google Scholar 

  29. Sinha S, Wyslouzil BE, Wilemski G. Modeling of H2O/D2O condensation in supersonic nozzles. Aerosol Sci Technol. 2009;43(1):9–24.

    Article  CAS  Google Scholar 

  30. Němec T. Scaled nucleation theory for bubble nucleation of lower alkanes. Eur Phys J E. 2014;37(11):111.

    Article  Google Scholar 

  31. Kermani MJ, Gerber AG. A general formula for the evaluation of thermodynamic and aerodynamic losses in nucleating steam flow. Int J Heat Mass Transf. 2003;46(17):3265–78.

    Article  Google Scholar 

  32. Hric V, Halama J. Numerical solution of transonic wet steam flow in blade-to-blade cascade with non-equilibrium condensation and real thermodynamics. In: EPJ web of conferences 2015, vol. 92, p. 02025. EDP Sciences.

  33. Yan F. Numerical simulations of high Knudsen number gas flows and microchannel electrokinetic liquid flows. PhD thesis, Drexel University. 2003.

  34. Bakhtar F, Mahpeykar MR. On the performance of a cascade of turbine rotor tip section blading in nucleating steam Part 3: theoretical treatment. Proc Inst Mech Eng Part C J Mech Eng Sci. 1997;211(3):195–210.

    Article  Google Scholar 

  35. Hamidi S, Kermani MJ. Numerical study of non-equilibrium condensation and shock waves in transonic moist-air and steam flows. Aerosp Sci Technol. 2015;30(46):188–96.

    Article  Google Scholar 

  36. Wróblewski W, Dykas S. Two-fluid model with droplet size distribution for condensing steam flows. Energy. 2016;1(106):112–20.

    Article  Google Scholar 

  37. Young JB. Nucleation in high pressure steam and flow in turbines. Doctoral dissertation, University of Birmingham.

  38. Moore MJ, Walters PT, Crane RI, Davidson BJ. Predicting the fog drop size in wet steam turbines. Wet Steam. 1973;4:101–9.

    Google Scholar 

  39. Wang C, Wang L, Zhao H, Du Z, Ding Z. Effects of superheated steam on non-equilibrium condensation in ejector primary nozzle. Int J Refrig. 2016;31(67):214–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Mahpeykar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi Somesaraee, M., Amiri Rad, E. & Mahpeykar, M.R. Analytical investigation of simultaneous effects of convergent section heating of Laval nozzle, steam inlet condition, and nozzle geometry on condensation shock. J Therm Anal Calorim 133, 1023–1039 (2018). https://doi.org/10.1007/s10973-018-7126-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7126-x

Keywords

Navigation