Skip to main content
Log in

Lie group analysis and general forms of self-similar parabolic equations for fluid flow, heat and mass transfer of nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

On the basis of symmetry group analysis applied to fluid flow, heat and mass transfer equations for nanofluids in parabolic approximation, their symmetries (i.e., the Lie groups) were obtained. Using these groups, self-similar forms for independent variables and functions were derived, which describe velocity, temperature and concentration fields. These forms enabled obtaining generalized self-similar ordinary differential equations for parabolic flows of nanofluids. In these equations, physical properties of nanofluids (viscosity, thermal conductivity, diffusion coefficients and density) were specified in general form as functions of the temperature and nanoparticle concentration. Therefore, the proposed equations by their nature are universal and free from any specific form of the functional dependence of the physical properties of nanofluids on the temperature and nanoparticle concentration. Self-similar equations take into account different additional effects that arise in nanofluid flows. The paper includes particular examples of the description of specific problems (flows with streamwise pressure gradient, impingement, turbulence, free convection, boiling, etc.) on the basis of generalized transport equations. A novel self-similar solution for heat transfer in nanofluids accounting for dissipation effects was derived in the paper. This solution demonstrates that adding of nanoparticles causes earlier conversion of the cooling mode into the heating mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maxwell JC. Treatise on electricity and magnetism. London: Oxford University Press; 1904.

    Google Scholar 

  2. Keblinski P, Phillpot SR, Choi SUS, Eastman JA. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf. 2002;45:855–63.

    Article  CAS  Google Scholar 

  3. Yu W, France DM, Routbort JL, Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29(5):432–60.

    Article  CAS  Google Scholar 

  4. Brinkmann HC. The viscosity of concentrated suspensions and solution. J Chem Phys. 1952;20:571–81.

    Article  Google Scholar 

  5. Maiga SEB, Palm SM, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26:530–46.

    Article  CAS  Google Scholar 

  6. Abu-Nada E, Masoud Z, Oztop HF, Campo A. Effect of nanofluid variable properties on natural convection in enclosures. Int J Therm Sci. 2010;49:479–91.

    Article  CAS  Google Scholar 

  7. Ho CJ, Chen MW, Li ZW. Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Transf. 2008;51:4506–16.

    Article  CAS  Google Scholar 

  8. Ghasemi B, Aminossadati SM. Periodic natural convection in a nanofluid-filled enclosure with oscillating heat flux. Int J Therm Sci. 2010;49:1–9.

    Article  CAS  Google Scholar 

  9. Ogut EB. Natural convection of water-based nanofluids in an inclined enclosure with a heat source. Int J Therm Sci. 2009;48:2063–73.

    Article  CAS  Google Scholar 

  10. Thang BH, Khoi PH, Minh PN. A modified model for thermal conductivity of carbon nanotube-nanofluids. Phys Fluids. 2015;27:032002.

    Article  CAS  Google Scholar 

  11. Nold A, Oberlack M. Symmetry analysis in linear hydrodynamic stability theory: classical and new modes in linear shear. Phys Fluids. 2013;25:104101.

    Article  CAS  Google Scholar 

  12. Avramenko AA, Kobzar SG, Shevchuk IV, Kuznetsov AV, Iwanisov LT. Symmetry of turbulent boundary-layer flows: investigation of different eddy viscosity models. Acta Mech. 2001;151(1–2):1–14.

    Article  Google Scholar 

  13. Avramenko AA, Blinov DG, Shevchuk IV. Self-similar analysis of fluid flow and heat-mass transfer of nanofluids in boundary layer. Phys Fluids. 2011;23:082002.

    Article  CAS  Google Scholar 

  14. Avramenko AA, Blinov DG, Shevchuk IV, Kuznetsov AV. Symmetry analysis and self-similar forms of fluid flow and heat-mass transfer in turbulent boundary layer flow of a nanofluid. Phys Fluids. 2012;24:092003.

    Article  CAS  Google Scholar 

  15. Avramenko AA, Shevchuk IV, Abdallah S, Blinov DG, Harmand S, Tyrinov AI. Symmetry analysis for film boiling of nanofluids on a vertical plate using a nonlinear approach. J Mol Liq. 2016;223:156–64.

    Article  CAS  Google Scholar 

  16. Avramenko AA, Shevchuk IV, Abdallah S, Blinov DG, Tyrinov AI. Self-similar analysis of fluid flow, heat, and mass transfer at orthogonal nanofluid impingement onto a flat surface. Phys Fluids. 2017;29:052005.

    Article  CAS  Google Scholar 

  17. Buongiorno J. Convective transport in nanofluids. ASME J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  18. Kuznetsov AV, Nield DA. Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci. 2010;49:243–7.

    Article  CAS  Google Scholar 

  19. Yacob NA, Ishak A, Pop I, Vajravelu K. Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid. Nanoscale Res Lett. 2011;6(314):1–7.

    Google Scholar 

  20. Mahdavi M, Sharifpur M, Meyer JP. A novel combined model of discrete and mixture phases for nanoparticles in convective turbulent flow. Phys Fluids. 2017;29:082005.

    Article  CAS  Google Scholar 

  21. Azhar WA, Vieru D, Fetecau C. Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source. Phys Fluids. 2017;29:082001.

    Article  CAS  Google Scholar 

  22. Schlichting H, Gersten K. Boundary layer theory. 8th ed. Berlin: Springer; 2000.

    Book  Google Scholar 

  23. Loitsyanskii LG. Mechanics of liquids and gases. Oxford: Pergamon; 1966.

    Google Scholar 

  24. Olver P. Applications of Lie groups to differential equations. New York: Springer; 1985.

    Google Scholar 

  25. Blasius H. Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z Angew Math Phys. 1908;56:1–37.

    Google Scholar 

  26. Pohlhausen E. Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner reibung und kleiner Wärmeleitung. ZAMM. 1921;1(2):115–21.

    Article  CAS  Google Scholar 

  27. Wen D, Ding Y. Experimental Investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47:5181–8.

    Article  CAS  Google Scholar 

  28. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  29. Magyari E, Weidman PD. Heat transfer on a plate beneath an external uniform shear flow. Int J Therm Sci. 2006;45:110–5.

    Article  CAS  Google Scholar 

  30. Makinde OD, Khan WA, Khan ZH. Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int J Heat Mass Transf. 2013;62:526–33.

    Article  Google Scholar 

  31. Avramenko AA, Shevchuk IV, Tyrinov AI, Blinov DG. Heat transfer in stable film boiling of a nanofluid over a vertical surface. Int J Therm Sci. 2015;92:106–18.

    Article  CAS  Google Scholar 

  32. Bromley LA. Heat transfer in stable film boiling. Chem Eng Prog. 1950;46:211–27.

    Google Scholar 

  33. Ellion ME. A study of the mechanism of boiling heat transfer. Jet Prop Lab Memo CIT. 1954;20:1–88.

    Google Scholar 

  34. Yang XF, Liu ZH. Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures. Int J Therm Sci. 2011;50:2402–12.

    Article  CAS  Google Scholar 

  35. Falkner VM, Skan SW. Some approximate solutions of the boundary layer equations. Philos Mag. 1931;12:865–96.

    Article  Google Scholar 

  36. Temah MA, Dawood MMK, Shehata A. Numerical and experimental investigation of flow structure and behaviour of nanofluids flow impingement on horizontal flat plate. Exp Therm Fluid Sci. 2016;74:235–46.

    Article  CAS  Google Scholar 

  37. Zeiton O, Ali M. Nanofluid impingement get heat transfer. Nanoscale Res Lett. 2012;7:139–47.

    Article  CAS  Google Scholar 

  38. Glauert MB. The wall jet. J Fluid Mech. 1956;1(6):625–43.

    Article  Google Scholar 

  39. Wenhua Y, France DM, Routbort JL, Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29(5):432–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Shevchuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avramenko, A.A., Shevchuk, I.V. Lie group analysis and general forms of self-similar parabolic equations for fluid flow, heat and mass transfer of nanofluids. J Therm Anal Calorim 135, 223–235 (2019). https://doi.org/10.1007/s10973-018-7053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7053-x

Keywords

Navigation