Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 3, pp 1645–1660 | Cite as

A new correlation between the characteristics temperature and glass-forming ability for bulk metallic glasses

  • Zhilin Long
  • Wei Liu
  • Ming Zhong
  • Yun Zhang
  • Mingshengzi Zhao
  • Guangkai Liao
  • Zhuo Chen


A new criterion or parameter χ given by \(\left( {\frac{{T_{\text{x}} - T_{\text{g}} }}{{T_{\text{l}} - T_{\text{x}} }}} \right) \times \left( {\frac{{T_{\text{x}} }}{{T_{\text{l}} - T_{\text{x}} }}} \right)^{a}\) (wherein Tg is the glass transition temperature, Tx the onset crystallization temperature, Tl the liquidus temperature or the offset temperature of melting and a a fitting exponent) has been suggested to predict the glass-forming ability (GFA) of bulk metallic glasses (BMGs). Regression analysis between the critical diameter Dmax and this criterion yielded a value of a = 1.47. There exists a linear relationship between χ and Dmax with a coefficient of determination R2 = 0.43, and this correlation can be expressed by the approximation formula: \(D_{\hbox{max} } = \left( {0.33 \pm 0.30} \right) + \left( {15.0 \pm 0.70} \right)\chi\). The comparisons of the χ parameter with the currently available parameters based on characteristic transformation temperatures of BMGs clearly confirmed that the new criterion exhibits the best ability for appraising the GFA of the alloys. Finally, evaluated glass-forming tendencies of four previously reported Zr-based BMGs using this χ parameter were compared with their corresponding experimental results.


Bulk metallic glass Characteristic temperature Glass-forming ability Criterion 



This study was supported by the National Natural Science Foundation of China (51471139, 51071134), the Natural Science Foundation of Hunan Province (12JJ2024) and the Postgraduate Research and Innovation Project of Hunan Province (CX2014B278).


  1. 1.
    Long ZL, Ding YH, Shao Y, Zhang P, Inoue A. Corrosion behavior of Fe-based ferromagnetic (Fe, Ni)–B–Si–Nb bulk glassy alloys in aqueous electrolytes. J Non-Cryst Solids. 2008;354:4609–13.CrossRefGoogle Scholar
  2. 2.
    Long ZL, Shao Y, Xie GQ, Zhang P, Inoue A. Enhanced soft-magnetic and corrosion properties of Fe-based bulk glassy alloys with improved plasticity through the addition of Cr. J Alloys Compd. 2008;462:52–9.CrossRefGoogle Scholar
  3. 3.
    Long ZL, Shao Y, Deng XH, Zhang ZC, Jiang Y, Zhang P, Shen BL, Inoue A. Cr effects on magnetic and corrosion properties of Fe–Co–Si–B–Nb–Cr bulk glassy alloys with high glass-forming ability. Intermetallics. 2007;15:1453–8.CrossRefGoogle Scholar
  4. 4.
    Long ZL, Shen BL, Shao Y, Chang CT, Zeng YQ, Inoue A. Corrosion behavior of [(Fe0.6Co0.4)0.75B0.2Si0.05]96Nb4 bulk glassy alloy in sulphuric acid solutions. Mater Trans. 2006;47:2566–70.CrossRefGoogle Scholar
  5. 5.
    Cohen MH, Turnbull D. Composition requirements for glass formation in metallic and ionic systems. Nature. 1961;189:131–2.CrossRefGoogle Scholar
  6. 6.
    Long ZL, Wei HQ, Ding YH, Zhang P, Xie GQ, Inoue A. A new criterion for predicting the glass-forming ability of bulk metallic glasses. J Alloys Compd. 2009;475:207–19.CrossRefGoogle Scholar
  7. 7.
    Long ZL, Xie GQ, Wei HQ, Su XP, Peng J, Zhang P, Inoue A. On the new criterion to assess the glass-forming ability of metallic alloys. Mater Sci Eng A. 2009;509:23–30.CrossRefGoogle Scholar
  8. 8.
    Guo S, Liu CT. New glass forming ability criterion derived from cooling consideration. Intermetallics. 2010;18:2065–8.CrossRefGoogle Scholar
  9. 9.
    Zhang P, Wei HQ, Wei XL, Long ZL, Su XP. Evaluation of glass-forming ability for bulk metallic glasses based on characteristic temperatures. J Non-Cryst Solids. 2009;355:2183–9.CrossRefGoogle Scholar
  10. 10.
    Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48:279–306.CrossRefGoogle Scholar
  11. 11.
    Luo SY, Li JH, Liu JB, Liu BX. Atomic modeling to design favored compositions for the ternary Ni–Nb–Zr metallic glass formation. Acta Mater. 2014;76:482–92.CrossRefGoogle Scholar
  12. 12.
    Miracle DB. A structural model for metallic glasses. Nat Mater. 2004;3:697–702.CrossRefGoogle Scholar
  13. 13.
    Park ES, Kim DH, Kim WT. Parameter for glass forming ability of ternary alloy systems. Appl Phys Lett. 2005;86:061907-1–3.Google Scholar
  14. 14.
    Cheng YQ, Ma E, Sheng HW. Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett. 2009;102:245501-1–4.Google Scholar
  15. 15.
    Zhang K, Smith WW, Wang ML, Liu YH, Schroers J, Shattuck MD, O’Hern CS. Connection between the packing efficiency of binary hard spheres and the glass-forming ability of bulk metallic glasses. Phys Rev E. 2014;90:032311-1–5.Google Scholar
  16. 16.
    Sarwat SG, Ramya M, Ali PS, Raj B, Ravi KR. A new thermodynamic parameter G CE for identification of glass forming compositions. J Alloys Compd. 2015;627:337–43.CrossRefGoogle Scholar
  17. 17.
    Takeuchi A, Inoue A. Calculations of amorphous-forming composition range for ternary alloy systems and analyses of stabilization of amorphous phase and amorphous-forming ability. Mater Trans. 2001;42:1435–44.CrossRefGoogle Scholar
  18. 18.
    Cohen MH, Grest GS. Liquid–glass transition, a free-volume approach. Phys Rev B. 1979;20:1077–98.CrossRefGoogle Scholar
  19. 19.
    Louzguine-Luzgin DV, Inoue A. An extended criterion for estimation of glass-forming ability of metals. J Mater Res. 2007;22:1378–83.CrossRefGoogle Scholar
  20. 20.
    Park ES, Kim DH. Correlation between volumetric change and glass-forming ability of metallic glass-forming alloys. Appl Phys Lett. 2008;92:091915-1–3.Google Scholar
  21. 21.
    Ma D, Cao H, Chang YA. Identifying bulk metallic glass-formers from multi-component eutectics. Intermetallics. 2007;15:1122–6.CrossRefGoogle Scholar
  22. 22.
    Lu ZP, Tan H, Li Y, Ng SC. The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scr Mater. 2000;42:667–73.CrossRefGoogle Scholar
  23. 23.
    Lu ZP, Liu CT. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 2002;50:3501–12.CrossRefGoogle Scholar
  24. 24.
    Turnbull D. Under what conditions can a glass be formed? Contemp Phys. 1969;10:473–88.CrossRefGoogle Scholar
  25. 25.
    Gu B, Liu F, Jiang YH, Zhang K. Evaluation of glass-forming ability criterion from phase-transformation kinetics. J Non-Cryst Solids. 2012;358:1764–71.CrossRefGoogle Scholar
  26. 26.
    Majid A, Ahsan SB, Tariq NUH. Modeling glass-forming ability of bulk metallic glasses using computational intelligent techniques. Appl Soft Comput. 2015;28:569–78.CrossRefGoogle Scholar
  27. 27.
    Thompson CV, Greer AL, Spaepen F. Crystal nucleation in amorphous (Au100-yCuy)77Si9Ge14 alloys. Acta Metall. 1983;31:1883–94.CrossRefGoogle Scholar
  28. 28.
    Tanner LE. Metallic glass formation and properties in Zr and Ti alloyed with Be–I the binary Zr–Be and Ti–Be systems. Acta Metall. 1979;27:1727–47.CrossRefGoogle Scholar
  29. 29.
    Xu DH, Johnson WL. Crystallization kinetics and glass-forming ability of bulk metallic glasses Pd40Cu30Ni10P20 and Zr41.2Ti13.8Cu12.5Ni10Be22.5 from classical theory. Phys Rev B. 2006;74:024207-1–5.Google Scholar
  30. 30.
    Yuan ZZ, Bao SL, Lu Y, Zhang DP, Yao L. A new criterion for evaluating the glass-forming ability of bulk glass forming alloys. J Alloys compd. 2008;459:251–60.CrossRefGoogle Scholar
  31. 31.
    Inoue A, Kato A, Zhang T, Kim SG, Masumoto T. Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater Trans. 1991;32:609–16.CrossRefGoogle Scholar
  32. 32.
    Ji XL, Pan Y. A thermodynamic approach to assess glass-forming ability of bulk metallic glasses. Trans Nonferrous Met Soc China. 2009;19:1271–9.CrossRefGoogle Scholar
  33. 33.
    Błyskun P, Maj P, Kowalczyk M, Latuch J, Kulik T. Relation of various GFA indicators to the critical diameter of Zr-based BMGs. J Alloys Compd. 2015;625:13–7.CrossRefGoogle Scholar
  34. 34.
    Tripathi MK, Ganguly S, Dey P, Chattopadhyay PP. Evolution of glass forming ability indicator by genetic programming. Comput Mater Sci. 2016;118:56–65.CrossRefGoogle Scholar
  35. 35.
    Wang LF, Zhang QD, Cui X, Zu FQ. An empirical criterion for predicting the glass-forming ability of amorphous alloys based on electrical transport properties. J Non-Cryst Solids. 2015;419:51–7.CrossRefGoogle Scholar
  36. 36.
    Uhlmann DR. Glass formation. J Non-Cryst Solids. 1977;25:43–5.CrossRefGoogle Scholar
  37. 37.
    Davies HA. The formation of metallic glasses. Phys Chem Glasses. 1976;17:159–73.Google Scholar
  38. 38.
    Senkov ON. Correlation between fragility and glass-forming ability of metallic alloys. Phys Rev B. 2007;76:104202-1–5.CrossRefGoogle Scholar
  39. 39.
    Park ES, Ryu CW, Kim WT, Kim DH. A novel parameter to describe the glass-forming ability of alloys. J Appl Phys. 2015;118:064902-1–-13.Google Scholar
  40. 40.
    Xiao XS, Fang SS, Wang GM, Hua Q, Dong YD. Influence of beryllium on thermal stability and glass-forming ability of Zr–Al–Ni–Cu bulk amorphous alloys. J Alloys Compd. 2004;376:145–8.CrossRefGoogle Scholar
  41. 41.
    Mongal K, Murty BS. On the parameters to assess the glass forming ability of liquids. J Non-Cryst Solids. 2005;351:1366–71.CrossRefGoogle Scholar
  42. 42.
    Chen QJ, Shen J, Fan HB, Sun JF, Huang YJ, Mccartney DG. Glass-forming ability of an iron-based alloy enhanced by Co addition and evaluated by a new criterion. Chin Phys Lett. 2005;22:1736–8.CrossRefGoogle Scholar
  43. 43.
    Chen QJ, Shen J, Zhang DL, Fan HB, Sun JF, Mccartney DG. A new criterion for evaluating the glass-forming ability of bulk metallic glasses. Mater Sci Eng A. 2006;433:155–60.CrossRefGoogle Scholar
  44. 44.
    Du XH, Huang JC, Liu CT, Lu ZP. New criterion of glass forming ability for bulk metallic glasses. J Appl Phys. 2007;101:086108-1–3.Google Scholar
  45. 45.
    Fan GJ, Choo H, Liaw PK. A new criterion for the glass-forming ability of liquids. J Non-Cryst Solids. 2007;353:102–7.CrossRefGoogle Scholar
  46. 46.
    Du XH, Huang JC. New criterion in predicting glass forming ability of various glass-forming systems. Chin Phys B. 2008;17:249–54.CrossRefGoogle Scholar
  47. 47.
    Zhang GH, Chou KC. A criterion for evaluating glass-forming ability of alloys. J Appl Phys. 2009;106:094902-1–4.Google Scholar
  48. 48.
    Wei HQ, Long ZL, Zhang ZC, Li XA, Peng J, Zhang P. Correlations between viscosity and glass-forming ability in bulk amorphous alloys. Acta Phys Sin. 2009;58:2556–64.Google Scholar
  49. 49.
    Dong BS, Zhou SX, Li DR, Lu CW, Guo F, Ni XJ, Lu ZC. A new criterion for predicting glass forming ability of bulk metallic glasses and some critical discussions. Prog Nat Sci Mater Int. 2011;21:164–72.CrossRefGoogle Scholar
  50. 50.
    Lu ZP, Tan H, Ng SC, Li Y. Reduced glass transition temperature and glass forming ability of bulk glass forming alloys. J Non-Cryst Solids. 2000;270:103–14.CrossRefGoogle Scholar
  51. 51.
    Gargarella P, Pauly S, Khoshkhoo MS, Kiminami CS, Kühn U, Eckert J. Improving the glass-forming ability and plasticity of a TiCu-based bulk metallic glass composite by minor additions of Si. J Alloys Compd. 2016;663:531–9.CrossRefGoogle Scholar
  52. 52.
    Lu ZP, Liu CT. Glass formation criterion for various glass-forming systems. Phys Rev Lett. 2003;91:115505-1–4.Google Scholar
  53. 53.
    Jindal V, Srivastava VC, Uhlenwinkel V. On the role of liquid phase stability and GFA parameters. J Non-Cryst Solids. 2009;355:1552–5.CrossRefGoogle Scholar
  54. 54.
    Kim JH, Park JS, Lim HK, Kim WT, Kim DH. Heating and cooling rate dependence of the parameters representing the glass forming ability in bulk metallic glasses. J Non-Cryst Solids. 2005;351:1433–40.CrossRefGoogle Scholar
  55. 55.
    Kozmidis-Petrovic A, Šesták J. Forty years of the Hrubý glass-forming coefficient via DTA when comparing other criteria in relation to the glass stability and vitrification ability. J Therm Anal Calorim. 2012;110:997–1004.CrossRefGoogle Scholar
  56. 56.
    Prajapati SR, Kasyap S, Pratap A. Effect of driving force of crystallization on critical cooling rate for Pd-based metallic glasses. J Therm Anal Calorim. 2017;127:2083–91.CrossRefGoogle Scholar
  57. 57.
    Liu CR, Madinehei M, Pineda E, Crespo D. Relaxation dynamics of Fe55Cr10Mo14C15B6 metallic glass explored by mechanical spectroscopy and calorimetry measurements. J Therm Anal Calorim. 2016;125:711–9.CrossRefGoogle Scholar
  58. 58.
    Pilarczyk W, Zarychta A. The influence of heat treatment on the structure and thermal properties of metallic glasses. J Therm Anal Calorim. 2016;125:1453–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Zhilin Long
    • 1
  • Wei Liu
    • 1
  • Ming Zhong
    • 1
  • Yun Zhang
    • 1
  • Mingshengzi Zhao
    • 1
  • Guangkai Liao
    • 1
  • Zhuo Chen
    • 1
  1. 1.College of Civil Engineering and MechanicsXiangtan UniversityXiangtanChina

Personalised recommendations