Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 1145–1152 | Cite as

Effect of a novel compound nucleating agent calcium sulfate whisker/β-nucleating agent dicyclohexyl-terephthalamide on crystallization and melting behavior of isotactic polypropylene

Article
  • 41 Downloads

Abstract

The silane coupling agent KH-550 was used to perform surface modification on calcium sulfate whiskers (CSW). Fourier transform infrared spectroscopy and thermogravimetric analysis were used to characterize the effect of surface modification on enhancing the compatibility of CSW with isotactic polypropylene (iPP). Subsequently, the synergetic effect of CSW modified by KH-550 (K-CSW) and aryl amide β-nucleating agent dicyclohexyl-terephthalamide (commercial name: TMB-5) on increasing the relative content of β-crystals and the peak crystallization temperature of iPP was studied. The results showed that KH-550 was a suitable surfactant for surface modification of CSW and K-CSW had certain β-nucleating abilities for iPP. Moreover, for iPP nucleated with the K-CSW/TMB-5, the higher peak crystallization temperature and relative content of β-crystals (Kβ = 0.84) were achieved, which were obviously better than those of iPP nucleated with K-CSW or TMB-5 independently, demonstrating that K-CSW/TMB-5 was a novel highly efficient compound β-nucleating agent for iPP and had certain synergistic effect for formation of β crystals.

Keywords

Compound nucleating agent Calcium sulfate whiskers Isotactic polypropylene Synergistic effect 

Notes

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 21376031), Scientific Research Fund of Hunan Provincial Education Department (Grant No. 16A004) and the Research Innovation Program for College Graduates of Hunan Province (Grant No. CX2016B416).

References

  1. 1.
    Zhang YF, Luo XZ, Yang XJ, Chang Y. Effects of α/β compound nucleating agents on mechanical properties and crystallization behaviors of isotactic polypropylene. J Macromol Sci Part B Phys. 2012;51:2352–60.CrossRefGoogle Scholar
  2. 2.
    Torre J, Cortazar M, Gomez MA, Ellis G, Rieke C, Dumas P. Nature of the crystalline interphase in sheared IPP/vectra fiber model composites by microfocus X-ray diffraction and IR microspectroscopy using synchrotron radiation. Macromolecules. 2006;39:5564–8.CrossRefGoogle Scholar
  3. 3.
    Zhang YF, Chen H. Effects of nucleating agent 1,3,5-benzenetricarboxylic acid tris (cyclohexylamide) on properties and crystallization behaviors of isotactic polypropylene. Colloid Polym Sci. 2014;292:493–8.CrossRefGoogle Scholar
  4. 4.
    Zhang YF, Zhou PZ, Guo LH, Hou HH. The relationship between crystal structure and nucleation effect of 1,3,5-benzenetricarboxylic acid tris(phenylamide) in isotactic polypropylene. Colloid Polym Sci. 2017;295:619–26.CrossRefGoogle Scholar
  5. 5.
    Zhang YF, Li D, Chen QJ. Preparation and nucleation effects of nucleating agent hexahydrophthalic acid metal salts for isotactic polypropylene. Colloid Polym Sci. 2017;295:1973–82.CrossRefGoogle Scholar
  6. 6.
    Zhang YF, Zhou PZ, Jiang YZ, Yang X. The relationship between side chain isomerism of aliphatic C4 substituted 1,3,5-benzenetricarboxylamides and nucleation effects in isotactic polypropylene. Thermochim Acta. 2017;655:219–25.CrossRefGoogle Scholar
  7. 7.
    Meille SV, Bruckner S. Non-parallel chains in crystalline γ-isotactic polypropylene. Nature. 1989;340:455–7.CrossRefGoogle Scholar
  8. 8.
    An Y, Zhang Z, Bi WG, Wang YH, Tang T. Characterization of high melt strength polypropylene synthesized via silane grafting initiated by in situ heat induction reaction. J Appl Polym Sci. 2008;110:3727–32.CrossRefGoogle Scholar
  9. 9.
    Zhang YF, Hou HH, Guo LH. Effects of cyclic carboxylate nucleating agents on nucleus density and crystallization behavior of isotactic polypropylene. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6669-6.Google Scholar
  10. 10.
    Stocker W, Schumacher M, Graff S, Thierry A, Wittmann JC, Lotz B. Epitaxial crystallization and AFM investigation of a frustrated polymer structure: isotactic poly (propylene), β phase. Macromolecules. 1998;31:807–14.CrossRefGoogle Scholar
  11. 11.
    Zhang YF, Guo LH, Chen H, Liu BB, Gu YH. Properties and crystallization behaviors of isotactic polypropylene under action of an effective nucleating agent. J Macromol Sci Part B Phys. 2015;54:1019–28.CrossRefGoogle Scholar
  12. 12.
    Cebe P, Hong SD. Crystallization behaviour of poly(ether-ether-ketone). Polymer. 1986;27:1183–9.CrossRefGoogle Scholar
  13. 13.
    Dong M, Guo ZX, Su ZQ, Yu J. Study of the crystallization behaviors of isotactic polypropylene with sodium benzoate as a specific versatile nucleating agent. J Polym Sci, Part B: Polym Phys. 2008;16:1183–92.CrossRefGoogle Scholar
  14. 14.
    Kawai T, Iijima R, Yamamoto Y, Kimura T. Crystal orientation of β-phase isotactic polypropylene induced by magnetic orientation of N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide. Polymer. 2012;43:7301–6.CrossRefGoogle Scholar
  15. 15.
    Wei ZY, Zhang WX, Chen GY, Liang JC, Yang S, Wang P, Liu L. Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J Therm Anal Calorim. 2010;102:775–83.CrossRefGoogle Scholar
  16. 16.
    Zhao SC, Xin Z. Nucleation characteristics of the α/β compounded nucleating agents and their influences on crystallization behavior and mechanical properties of isotactic polypropylene. J Polym Sci, Part B: Polym Phys. 2010;48:653–5.CrossRefGoogle Scholar
  17. 17.
    Xu N, Pang LS, Lu LB, Pang SJ, Lin Q. Crystallization behavior and melting characteristics of isotactic polypropylene nucleated by a novel nucleating agent. Adv Mater Res. 2011;233:2413–8.CrossRefGoogle Scholar
  18. 18.
    Horváth Z, Menyhárd A, Doshev P, Gaheitner M, Tranninger C. Effect of molecular architecture on the crystalline structure and stiffness of iPP homopolymers: modeling based on annealing experiments. J Appl Polym Sci. 2013;130:3365–73.CrossRefGoogle Scholar
  19. 19.
    Lv YD, Huang YJ, Kong MQ, Li GX. Improved thermal oxidation stability of polypropylene films in the presence of β-nucleating agent. Polym Test. 2013;32:179–86.CrossRefGoogle Scholar
  20. 20.
    Zhang G, Shi X, Xing Y, Chen T. Surface modification of CaCO3 filler and its characterization using inverse gas chromatography (IGC). Front Chem China. 2008;3:99–104.CrossRefGoogle Scholar
  21. 21.
    Mihajloviä S, Dakoviä A, Sekuliä A, Jovanoviä V, Vuäiniä D. Influence of the modification method on the surface adsorption of stearic acid by natural calcite. J Serb Chem Soc. 2009;67:1–19.CrossRefGoogle Scholar
  22. 22.
    Wang X, Yang LS, Zhu XF, Yang JK. Preparation of calcium sulfate whiskers from FGD gypsum via hydrothermal crystallization in the H2SO4–NaCl–H2O system. Particuology. 2014;360:1–7.CrossRefGoogle Scholar
  23. 23.
    Liu CJ, Zhao Q, Wang YG, Shi PY, Jiang MF. Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum. Appl Surf Sci. 2016;306:263–9.CrossRefGoogle Scholar
  24. 24.
    Nelson K, Deng Y. Enhanced bondability between inorganic particles and a polysaccharide substrate by encapsulation with regenerated cellulose. J Appl Polym Sci. 2007;19:2830–6.Google Scholar
  25. 25.
    Yuan WJ, Cui JY, Xu SA. Mechanical properties and interfacial interaction of modified calcium sulfate whisker/poly(vinyl chloride) composites. J Mater Sci Technol. 2016;32:1352–60.CrossRefGoogle Scholar
  26. 26.
    Miao M, Feng X, Wang G, Cao S, Shi W, Shi L. Direct transformation of FGD gypsum to calcium sulfate hemihydrate whiskers: preparation. Simul Process Anal Particuol. 2015;19:53–9.Google Scholar
  27. 27.
    Sun HJ, Tan DY, Peng TJ, Liang YQ. Preparation of calcium sulfate whisker by atmospheric acidification method from flue gas desulfurization gypsum. Proc Environ Sci. 2016;31:621–6.CrossRefGoogle Scholar
  28. 28.
    Liu HJ, Yan H, Liu B, Wei LQ, Xu BS. The influence of KH-550 on properties of ammonium polyphosphate and polypropylene flame retardant composites. Polym Degrad Stab. 2011;96:1382–8.CrossRefGoogle Scholar
  29. 29.
    Lamberti G. A direct way to determine iPP density nucleation from DSC isothermal measurements. Polym Bull. 2004;52:443–9.CrossRefGoogle Scholar
  30. 30.
    McGenity PM, Hooper JJ, Paynter CD, Riley AM, Nutbeem C, Eiton NJ, Adams MJ. Nucleation and crystallization of polypropylene by mineral fillers: relationship to impact strength. Polymer. 1992;33:5215–24.CrossRefGoogle Scholar
  31. 31.
    Li JX, Cheng WL, Jia D. A study on the heat of fusion of β-polypropylene. Polymer. 1999;40:1219–22.CrossRefGoogle Scholar
  32. 32.
    Li J, Bao RY, Xie BH, Yang MB. Effect of annealing temperature on the mechanical properties, thermal behavior and morphology of β-iPP/PA6 blends. Mater Des. 2012;40:392–9.CrossRefGoogle Scholar
  33. 33.
    Horváth F, Gombár T, Varga J, Menyhárd A. Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide. J Therm Anal Calorim. 2017;128:925–35.CrossRefGoogle Scholar
  34. 34.
    Zhao SC, Cai Z, Xin Z. A highly active novel β-nucleating agent for isotactic polypropylene. Polymer. 2008;49:2745–54.CrossRefGoogle Scholar
  35. 35.
    Turner-Jones A, Aizlewood AM, Beckett DR. Crystalline forms of isotactic polypropylene, Macromol Chem. 1963;75:134–158.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Chemistry and Biological EngineeringChangsha University of Science and TechnologyChangshaChina

Personalised recommendations