Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 3, pp 1717–1727 | Cite as

Synthesis, thermal behavior, and spectroscopic study of the solid nalidixate of selected light trivalent lanthanides

  • Marcos Vinícius Dobies Návia
  • Diogo Alves Gálico
  • Flávio Junior Caires
  • José Marques Luiz
  • Ronaldo Spezia Nunes
Article

Abstract

Solid-state [Ln(nal)3nH2O compounds, where Ln represents light trivalent lanthanide (La to Sm, except Pm), nal is nalidixate (C12H11N2O3), and n is the number of water molecules, were synthesized. Characterization and investigation were made by means of complexometry, elemental analysis, powder X-ray diffraction, Fourier transform infrared, near infrared (NIR) and diffuse reflectance spectroscopies, simultaneous thermogravimetry and differential thermal analysis, and differential scanning calorimetry. The dehydration process occurs in a single step up to 453 K. The final temperature of dehydration decreases from Pr(III) to Sm(III), and the thermal stability of anhydrous compounds increases from La(III) to Sm(III) (except Ce), and these behaviors are related to the decrease in the ionic radius of the lanthanide ion. The thermal decomposition of the anhydrous compounds occurs in three, four, or five consecutive steps, with formation of the respective oxides CeO2, Pr6O11, and Ln2O3 (Ln = La, Nd, and Sm) as final residues. The results also provide information concerning the composition and thermal behavior of these compounds. Spectroscopic studies in the UV–Vis and NIR regions provide information about the characteristics 4f–4f transitions for the Pr(III), Nd(III), and Sm(III) compounds, as well as the NIR region characteristic overtone and combination bands of the compounds.

Keywords

Nalidixic acid Nalidixates Trivalent lanthanides Synthesis Characterization Thermal study Spectroscopic study 

Notes

Acknowledgements

The authors thank PROPe—UNESP (Proc. 0109/008/13-PROPe/CDC), FAPESP (Proc. 2006/06951-3), CAPES, and CNPq (Proc. 472233/2008-4 and 150759/2009) for financial support. This research was supported by resources supplied by the Faculdade de Engenharia de Guaratinguetá (UNESP), Instituto de Química de Araraquara (UNESP), and a special thanks to GFQM-IQ for X ray diffraction measurements.

Supplementary material

10973_2018_7042_MOESM1_ESM.pdf (636 kb)
Supplementary material 1 (PDF 635 kb)

References

  1. 1.
    Zong GC, Ren N, Zhang JJ, Qi XX, Gao J. Lanthanide complexes with 3-bromine-4-methyl benzoic acid and 1,10-phenanthroline: synthesis, crystal structures, thermal properties and bacteriostatic activities. J Therm Anal Calorim. 2016;123:105–16.CrossRefGoogle Scholar
  2. 2.
    Martinez-Gomez NC, Vu HN, Skovran E. Lanthanide chemistry: from coordination in chemical complexes shaping our technology to coordination in enzymes shaping bacterial metabolism. Inorg Chem. 2016;55:10083–9.CrossRefGoogle Scholar
  3. 3.
    Wen H-R, Dong P-P, Liang F-Y, Liu S-J, Xie X-R, Tang Y-Z. A family of 2D lanthanide complexes based on flexible thiodiacetic acid with magnetocaloric or ferromagnetic properties. Inorg Chim Acta. 2017;455:190–6.CrossRefGoogle Scholar
  4. 4.
    Wang W-M, Guan X-F, Liu X-D, Fang M, Zhang C-F, Fang M, et al. Two Gd2 compounds constructed by 8-hydroxyquinoline Schiff base ligands: synthesis, structure, and magnetic refrigeration. Inorg Chem Commun. 2017;79:8–11.CrossRefGoogle Scholar
  5. 5.
    Liu F, Huang H, Gao W, Zhang X, Liu J-P. 3D Ln-MOFs containing pentanuclear clusters exhibiting magnetic refrigeration and slow magnetic relaxation. CrystEngComm. 2017;19:3660–5.CrossRefGoogle Scholar
  6. 6.
    Gao C, Hou G, Zuo D, Jiang W, Yu Y, Ma D-S, et al. Syntheses, crystal structures, magnetisms and luminescences of two series of lanthanide coordination polymers based on tricarboxylic ligand. ChemistrySelect. 2017;2:1111–6.CrossRefGoogle Scholar
  7. 7.
    Evstifeev IS, Efimov NN, Varaksina EA, Taydakov IV, Mironov VS, Dobrokhotova ZV, et al. Thermostable 1D lanthanide 4-phenylbenzoate polymers [Ln(4-phbz)3]n (Ln = Sm, Eu, Gd, Tb, Dy, Ho) with isolated metal chains: synthesis, structure, luminescence, and magnetic properties. Eur J Inorg Chem. 2017;2017:2892–904.CrossRefGoogle Scholar
  8. 8.
    Ghosh S, Abbas Z, Dasari S, Patra AK. Luminescent Eu3+ and Tb3+ complexes of 4-aminophenyl terpyridine (ptpy): photophysical aspects, DNA and serum protein binding properties. J Lumin. 2017;187:46–52.CrossRefGoogle Scholar
  9. 9.
    Akhtar MN, Chen Y-C, AlDamen MA, Tong M-L. 3D oxalato-bridged lanthanide (III) MOFs with magnetocaloric, magnetic and photoluminescence properties. Dalton Trans. 2017;46:116–24.CrossRefGoogle Scholar
  10. 10.
    Wu J, Jin C, Zhang D-H, Ren N, Zhang J. A series of lanthanide complexes with 2,3-dichlorobenzoic acid and 2,2:6′,2″-terpyridine: crystal structures, spectroscopic and thermal properties. Thermochim Acta. 2015;620:28–35.CrossRefGoogle Scholar
  11. 11.
    Qi X-X, Wu J-C, Ren N, Zhao C-L, Zhang J-J, Zong G-C, et al. Novel lanthanide complexes constructed from 3, 4-dimethoxybenzoic acid: crystal structures, spectrum and thermochemical properties. Thermochim Acta. 2015;615:1–7.CrossRefGoogle Scholar
  12. 12.
    Huo J-X, Wang Y, Zhang D-H, Ren N, Zhang J-J. Syntheses, characterization, luminescence, and thermal decomposition mechanism of four lanthanide complexes with 4-ethylbenzoic acid and terpyridine. J Therm Anal Calorim. 2016;124:1575–85.CrossRefGoogle Scholar
  13. 13.
    Wang G-T, Zhang J-C, Tang Z-Y, Zhou H-T, Zhang L, Yang R-W, et al. Synthesis, structures, luminescence and magnetism of nine lanthanide complexes with three-dimensional frameworks constructed from 2-(pyridyl-N-oxide)methylphosphonic acid and oxalic acid. CrystEngComm. 2016;18:2437–45.CrossRefGoogle Scholar
  14. 14.
    Singh K, Srivastava P, Patra AK. Binding interactions with biological targets and DNA photocleavage activity of Pr(III) and Nd(III) complexes of dipyridoquinoxaline. Inorg Chim Acta. 2016;451:73–81.CrossRefGoogle Scholar
  15. 15.
    Sarkar T, Banerjee S, Mukherjee S, Hussain A. Mitochondrial selectivity and remarkable photocytotoxicity of a ferrocenyl neodymium(III) complex of terpyridine and curcumin in cancer cells. Dalton Trans. 2016;45:6424–38.CrossRefGoogle Scholar
  16. 16.
    Cotton FA, Wilkinson G. Advanced inorganic chemistry—a comprehensive text. 5th ed. New York: Wiley; 1988.Google Scholar
  17. 17.
    Campos FX, Nascimento ALCS, Colman TAD, Gálico DA, Carvalho ACS, Caires FJ, et al. Thermal behavior, spectroscopic studies and free radical scavenging potential of some mefenamate trivalent lanthanides (Sm, Eu, Gd, Tb and Dy). Thermochim Acta. 2017;651:73–82.CrossRefGoogle Scholar
  18. 18.
    Campos FX, Soares MRS, Terezo AJ, Siqueira AB. Synthesis, characterization, and antioxidant evaluation of solid-state mefenamates of some bivalent metals. J Therm Anal Calorim. 2014;115:167–76.CrossRefGoogle Scholar
  19. 19.
    Gálico DA, Lahoud MG, Davolos MR, Frem RCG, Fraga-Silva TFC, Venturini J, et al. Spectroscopic, luminescence and in vitro biological studies of solid ketoprofen of heavier trivalent lanthanides and yttrium(III). J Inorg Biochem. 2014;140:160–6.CrossRefGoogle Scholar
  20. 20.
    Binil PS, Anoop MR, Jisha KR, Suma S, Sudarsanakumar MR. Synthesis, spectral characterization, thermal and biological studies of lanthanide(III) complexes of oxyphenbutazone. J Rare Earths. 2014;32:43–51.CrossRefGoogle Scholar
  21. 21.
    Lin J, Xu X, Zhou W, Yu L, Wang Q. Easy assembly of visible light excited lanthanide containing edifices and structural origin. Dyes Pigments. 2015;119:56–61.CrossRefGoogle Scholar
  22. 22.
    Zhou X, Zhao X, Wang Y, Wu B, Shen J, Li L, et al. Eu(III) and Tb(III) complexes with the nonsteroidal anti-inflammatory drug carprofen: synthesis, crystal structure, and photophysical properties. Inorg Chem. 2014;53:12275–82.CrossRefGoogle Scholar
  23. 23.
    Singha S, Ahn K. Detection of ciprofloxacin in urine through sensitized lanthanide luminescence. Sensors. 2016;16:2065.CrossRefGoogle Scholar
  24. 24.
    Kostova I, Momekov G, Tzanova T, Karaivanova M. Synthesis, characterization, and cytotoxic activity of new lanthanum(III) complexes of bis-coumarins. Bioinorg Chem Appl. 2006;2006:1–9.Google Scholar
  25. 25.
    Kostova I, Traykova M, Rastogi VK. New lanthanide complexes with antioxidant activity. Med Chem (Los Angeles). 2008;4:371–8.Google Scholar
  26. 26.
    Chen ZN, Deng RW, Wu JG. Synthesis, characterization, and antiinflammatory activity of naproxen complexes with rare earth (III). J Inorg Biochem. 1992;47:81–7.CrossRefGoogle Scholar
  27. 27.
    Refat MS, Al-Maydama HMA, Al-Azab FM, Amin RR, Jamil YMS. Synthesis, thermal and spectroscopic behaviors of metal-drug complexes: La(III), Ce(III), Sm(III) and Y(III) amoxicillin trihydrate antibiotic drug complexes. Spectrochim Acta Part A. 2014;128:427–46.CrossRefGoogle Scholar
  28. 28.
    Aggarwal N, Kumar R, Dureja P, Khurana JM. Synthesis, antimicrobial evaluation and QSAR analysis of novel nalidixic acid based 1,2,4-triazole derivatives. Eur J Med Chem. 2011;46:4089–99.CrossRefGoogle Scholar
  29. 29.
    Uivarosi V. Metal complexes of quinolone antibiotics and their applications: an update. Molecules. 2013;18:11153–97.CrossRefGoogle Scholar
  30. 30.
    Sekhon BS, Gandhi L. Synthesis and characterization of metal complexes of some antibacterial drugs. Int J Chemtech Res. 2010;2:286–8.Google Scholar
  31. 31.
    Psomas G, Kessissoglou DP. Quinolones and non-steroidal anti-inflammatory drugs interacting with copper(II), nickel(II), cobalt(II) and zinc(II): structural features, biological evaluation and perspectives. Dalton Trans. 2013;42:6252–76.CrossRefGoogle Scholar
  32. 32.
    Eliseeva SV, Liasotkyi VS, Golovach IP, Doga PG, Antonovich VP, Petoud S, et al. Exploring the ability of the nalidixate to sensitize visible and near-infrared emitting lanthanide(III) cations. Methods Appl Fluoresc. 2017;5:14002.CrossRefGoogle Scholar
  33. 33.
    Ionashiro M, Graner CAF, Netto JZ, Zuanon-Netto J. Titulação complexométrica de lantanídeos e ítrio. Eclética Química. 1983;8:29–32.Google Scholar
  34. 34.
    Flaschka HA. EDTA titrations: an introduction to theory and practice. 2nd ed. Oxford: Pergamon Press; 1964.Google Scholar
  35. 35.
    Lahoud MG, Frem RCG, Gálico DA, Bannach G, Nolasco MM, Ferreira RAS, Carlos LD. Intriguing light-emission features of ketoprofen-based Eu(III) adduct due to a strong electron–phonon coupling. J Lumin. 2016;170:357–63.CrossRefGoogle Scholar
  36. 36.
    Gálico DA, Fraga-Silva TFC, Venturini J, Bannach G. Thermal, spectroscopic and in vitro biological studies of the lanthanum complex of naproxen. Thermochim Acta. 2016;644:43–9.CrossRefGoogle Scholar
  37. 37.
    D’Assunção LM, Giolito I, Ionashiro M. Thermal decomposition of the hydrated basic carbonates of lanthanides and yttrium. Thermochim Acta. 1989;137:319–30.CrossRefGoogle Scholar
  38. 38.
    Miyano MH, Melios CB, Ribeiro CA, Redigolo H, Ionashiro M. The preparation and thermal decomposition of solid state compounds of 4-dimethylaminobenzylidenepyruvate and trivalent lanthanides and yttrium. Thermochim Acta. 1993;221:53–62.CrossRefGoogle Scholar
  39. 39.
    Oliveira LCS, Melios CB, Crespi MS, Ribeiro CA, Ionashiro M. Preparation and thermal decomposition of solid state compounds of 4-methoxybenzylidenepyruvate and trivalent lanthanides and yttrium. Thermochim Acta. 1993;219:215–24.CrossRefGoogle Scholar
  40. 40.
    Daiguebonne C, Kerbellec N, Guillou O, Bünzli J-C, Gumy F, Catala L, et al. Structural and luminescent properties of micro- and nanosized particles of lanthanide terephthalate coordination polymers. Inorg Chem. 2008;47:3700–8.CrossRefGoogle Scholar
  41. 41.
    Matias FRM, da Silva VMF, Nunes RS. Luiz JM. Synthesis, characterization and thermal behavior of some trivalent lanthanide 4-amino-benzenesulfonate salts. J Therm Anal Calorim. 2017;130:2185–90.CrossRefGoogle Scholar
  42. 42.
    Bannach G, Schnitzler E, Treu-Filho O, Utuni VHS, Ionashiro M. Synthesis, characterization and thermal studies on solid compounds of 2-chlorobenzylidenepyruvate of heavier trivalent lanthanides and yttrium(III). J Therm Anal Calorim. 2006;83:233–40.CrossRefGoogle Scholar
  43. 43.
    Bannach G, de Siqueira AB, Ionashiro EY, Rodrigues EC, Ionashiro M. Solid-state compounds of 2-chlorobenzylidenepyruvate with some bivalent metal ions: synthesis, characterization and thermal behaviour. J Therm Anal Calorim. 2007;90:873–9.CrossRefGoogle Scholar
  44. 44.
    Zaky M, El-Sayed MY, El-Megharbel SM, Abo Taleb S, Refat MS. Complexes of nalidixic acid with some vital metal ions: synthesis, chemical structure elucidation, and antimicrobial evaluation. Russ J Gen Chem. 2013;83:2488–501.CrossRefGoogle Scholar
  45. 45.
    Debnath A, Mogha NK, Masram DT. Metal complex of the first-generation quinolone antimicrobial drug nalidixic acid: structure and its biological evaluation. Appl Biochem Biotechnol. 2015;175:2659–67.CrossRefGoogle Scholar
  46. 46.
    Sutton CCR, Da Silva G, Franks GV. Modeling the IR spectra of aqueous metal carboxylate complexes: correlation between bonding geometry and stretching mode wavenumber shifts. Chem A Eur J. 2015;21:6801–5.CrossRefGoogle Scholar
  47. 47.
    Deacon GB, Huber F, Phillips RJ. Diagnosis of the nature of carboxylate coordination from the direction of shifts of carbonoxygen stretching frequencies. Inorg Chim Acta. 1985;104:41–5.CrossRefGoogle Scholar
  48. 48.
    Deacon GB, Phillips RJ. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.CrossRefGoogle Scholar
  49. 49.
    Sastri VS, Bünzli J-CG, Rao VR, Rayudu GVS, Perumareddi JR. Spectroscopy of lanthanide complexes. In: Modern aspects of rare earths and their complexes. Elsevier Science; 2003. p. 569–731.Google Scholar
  50. 50.
    Vogler A, Kunkely H. Excited state properties of lanthanide complexes: beyond ff states. Inorg Chim Acta. 2006;359:4130–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Faculdade de EngenhariaUniversidade Estadual Paulista (UNESP)GuaratinguetáBrazil
  2. 2.Instituto de QuímicaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  3. 3.Faculdade de CiênciasUniversidade Estadual Paulista (UNESP)BauruBrazil

Personalised recommendations