Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 1325–1332 | Cite as

Crystallization kinetics of MgO–Y2O3 composite nanopowder synthesized via combustion sol–gel method

  • A. Alhaji
  • R. S. Razavi
  • A. Ghasemi
  • M. R. Loghman-Estark
Article
  • 32 Downloads

Abstract

The aim of this study is to synthesize MgO–Y2O3 nanocomposite by combustion sol–gel method from sucrose as a combustion agent. The influence of the ratio of sucrose (Su) to the transition metals (TM) on the phase and particle size of the composite nanopowder was investigated using a combination of X-ray diffraction, transmission electron microscopy (TEM) and scanning electron microscopy techniques. In order to prediction of phase growth, the kinetics of crystallization of MgO–Y2O3 nanocomposite was also studied in the isothermal conditions using a differential scanning calorimetric technique. Results show that increasing the concentration of sucrose reduced the particle size from 29.3 to 21.6 nm. The ratio of Su to the TM optimized on 4 value. The Avrami exponent was found to be about 3 indicating 3-dimensional growth. The activation energy of crystallization was also determined to be 34.9 ± 0.01 kJ mol−1. Finally, the TEM results confirmed the 3-dimensional growth of MgO–Y2O3 nanopowders.

Keywords

Combustion sol–gel Crystallization Isothermal 3-Dimensional growth 

References

  1. 1.
    Kaygorodov AS, Ivanov VV, Khrustov VR, Kotov YA, Medvedev AI, Osipov VV, et al. Fabrication of Nd: Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders. J Eur Ceram Soc. 2007;27:1165–9.CrossRefGoogle Scholar
  2. 2.
    Li J-G, Ikegami T, Lee J-H, Mori T. Fabrication of translucent magnesium aluminum spinel ceramics. J Am Ceram Soc. 2000;83:2866–8.CrossRefGoogle Scholar
  3. 3.
    Ajayan PM, Schadler LS, Braun PV. Nanocomposite science and technology. London: Wiley; 2006.Google Scholar
  4. 4.
    Muoto CK, Jordan EH, Gell M, Aindow M. Effects of precursor chemistry on the structural characteristics of Y2O3–MgO nanocomposites synthesized by a combined sol–gel/thermal decomposition route. J Am Ceram Soc. 2011;94:372–81.CrossRefGoogle Scholar
  5. 5.
    Jiang D, Mukherjee AK. Synthesis of Y2O3–MgO nanopowder and infrared transmission of the sintered nanocomposite. In: Nanoscience engineering; 2008. p. 703007.Google Scholar
  6. 6.
    Xu S, Li J, Li C, Pan Y, Guo J. Hot pressing of infrared-transparent Y2O3–MgO nanocomposites using sol–gel combustion synthesized powders. J Am Ceram Soc. 2015;98:1019–26.Google Scholar
  7. 7.
    Wang J, Chen D, Jordan EH, Gell M. Infrared-transparent Y2O3–MgO nanocomposites using sol–gel combustion synthesized powder. J Am Ceram Soc. 2010;93:3535–8.CrossRefGoogle Scholar
  8. 8.
    Jiang D, Mukherjee AK. Spark plasma sintering of an infrared-transparent Y2O3–MgO nanocomposite. J Am Ceram Soc. 2010;93:769–73.CrossRefGoogle Scholar
  9. 9.
    Naskar MK. Hydrothermal synthesis of petal-like alumina flakes. J Am Ceram Soc. 2009;92:2392–5.CrossRefGoogle Scholar
  10. 10.
    Anedda R, Cannas C, Musinu A, Pinna G, Piccaluga G, Casu M. A two-stage citric acid-sol/gel synthesis of ZnO/SiO2 nanocomposites: study of precursors and final products. J Nanopart Res. 2008;10:107–20.CrossRefGoogle Scholar
  11. 11.
    Hasheminezhad SA, Haddad-Sabzevar M, Sahebian S. Non-isothermal crystallization kinetics of Co67Fe4Cr7Si8B14 amorphous alloy. In: Material Science Forum; 2012. p. 1311–1317.Google Scholar
  12. 12.
    Gao YQ, Wang W. On the activation energy of crystallization in metallic glasses. J Non Cryst Solids. 1986;81:129–34.CrossRefGoogle Scholar
  13. 13.
    Abu-Sehly A, Alamri SN, Joraid AA. Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples. J Alloys Compd. 2009;476:348–51.CrossRefGoogle Scholar
  14. 14.
    Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.CrossRefGoogle Scholar
  15. 15.
    Elabbar AA, El-Oyoun MA, Abu-Sehly AA, Alamri SN. Crystallization kinetics study of Pb4.3Se95.7 chalcogenide glass using DSC technique. J Phys Chem Solids. 2008;69:2527–30.CrossRefGoogle Scholar
  16. 16.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  17. 17.
    Çelikbilek M, Ersundu AE, Aydın S. Crystallization kinetics of amorphous materials. London: INTECH Open Access Publisher; 2012.Google Scholar
  18. 18.
    Ghorbani S, Razavi RS, Loghman-Estarki MR, Alhaji A. Synthesis of MgO–Y2O3 composite nanopowder with a high specific surface area by the Pechini method. Ceram Int. 2017;43:345–54.CrossRefGoogle Scholar
  19. 19.
    Chen C-H, Garofano JKM, Muoto CK, Mercado AL, Suib SL, Aindow M, et al. A foaming esterification sol–gel route for the synthesis of magnesia–yttria nanocomposites. J Am Ceram Soc. 2011;94:367–71.CrossRefGoogle Scholar
  20. 20.
    Alhaji A, Razavi RS, Ghasemi A, Loghman-Estarki MR. Modification of Pechini sol–gel process for the synthesis of MgO–Y2O3 composite nanopowder using sucrose-mediated technique. Ceram Int. 2017;43:2541–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • A. Alhaji
    • 1
  • R. S. Razavi
    • 1
  • A. Ghasemi
    • 1
  • M. R. Loghman-Estark
    • 1
  1. 1.Department of Materials EngineeringMalek Ashtar University of TechnologyShahin Shahr, IsfahanIran

Personalised recommendations