Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 927–935 | Cite as

A comparative study of structure, thermal degradation, and combustion behavior of starch from different plant sources

  • Xiaolan Zhu
  • Qing He
  • Yonghua Hu
  • Ruijie Huang
  • Ning Shao
  • Yun Gao


The present study investigated the structure, degradation properties, and combustion behavior of starch from maize, sweet potato, lotus root, and tobacco. Compared with other plant starches, tobacco starch had the smallest size, the highest amylose content and the least crystallinity. Microscale combustion calorimetry (MCC) experiment demonstrated that sweet potato starch showed the maximum peak heat release rate value (888.0 W g−1) while tobacco starch showed the minimum value (316.0 W g−1) and thermogravimetric analysis coupled with Fourier transform infrared spectrometer (TG-FTIR) results showed tobacco starch had good char formability (residue mass: 15.6%) and released more incombustible gaseous products, such as H2O and CO2. These results suggest that the thermal properties of plant starches were mainly influenced by the structural features and amylose content, especially the amylose ratio, and tobacco starch was very promising for application in green flame-retardant material.


Starch Carbohydrates Thermal degradation TG-FTIR Combustion behavior 



The authors gratefully acknowledge the financial support from the Key Laboratory of Tobacco Chemistry of China Tobacco Anhui Industrial Corporation (2015125).


  1. 1.
    Zhang B, Wang K, Hasjim J, Li E, Flanagan BM, Gidley MJ, Dhital S. Freeze-drying changes the structure and digestibility of B-polymorphic starches. J Agric Food Chem. 2014;62:1482–91.CrossRefGoogle Scholar
  2. 2.
    Garcia MC, Franco CML, Júnior MSS, Caliari M. Structural characteristics and gelatinization properties of sour cassava starch. J Therm Anal Calorim. 2016;123:919–26.CrossRefGoogle Scholar
  3. 3.
    Maaran S, Hoover R, Donner E, Liu Q. Composition, structure, morphology and physicochemical propertiesof lablab bean, navy bean, rice bean, tepary bean and velvet beanstarches. Food Chem. 2014;152:491–9.CrossRefGoogle Scholar
  4. 4.
    Syahariza ZA, Li E, Hasjim J. Extraction and dissolution of starch from rice and sorghum grains for accurate structural analysis. Carbohydr Polym. 2010;82:14–20.CrossRefGoogle Scholar
  5. 5.
    Santiago-Ramos D, Figreroa-Cardenas JD, Veles-Medina JJ, Mariscal-Moreno RM. Changes in the thermal and structural properties of maize starch during nixtamalization and tortilla-making processes as affected by grain hardness. J Cereal Sci. 2017;74:72–8.CrossRefGoogle Scholar
  6. 6.
    He F, Wang T, Tian B, Song Z, Shi L, Xu C, Zhan J, Gong C. Changes of granule structure and enzyme hydrolysability of starch in upper flue-cured tobacco leaves during bulk flue-curing. Agric Sci Technol. 2012;13:2642–7.Google Scholar
  7. 7.
    Zhang Y, Zeng H, Wang Y, Zeng S, Zeng B. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects. Food Chem. 2014;155:311–8.CrossRefGoogle Scholar
  8. 8.
    Kaczarska K, Grabowska B, Grabowski G, Bobrowski A, Kurleto-Koziol Z. Thermal decomposition of binder based on etherified starch to use in foundary industry. J Therm Anal Calorim. 2017;130:285–90.CrossRefGoogle Scholar
  9. 9.
    Wang X, Yuan Y, Yue T. The application of starch-based ingredients in flavor encapsulation. Starch Starke. 2015;67:225–36.CrossRefGoogle Scholar
  10. 10.
    Lemos PVF, Barbosa LS, Romas IG, Rodrigo EC, Druzian JI. The important role of crystallinity and amylose ratio in thermal stability of starches. J Therm Anal Calorim. 2017. Scholar
  11. 11.
    Liu X, Ma H, Yu L, Chen L, Tong Z, Chen P. Thermal-oxidative degradation of high-amylose corn starch. J Therm Anal Calorim. 2014;115:659–65.CrossRefGoogle Scholar
  12. 12.
    Liu X, Wang Y, Yu L, Tong Z, Chen L, Liu H, Li X. Thermal degradation and stability of starch under different processing conditions. Starch Starke. 2013;65:48–60.CrossRefGoogle Scholar
  13. 13.
    Hornung PS, Cordoba LP, Lazzarotta SRS, Schnitzler E, Lazzarotto M, Ribani RH. Brazilian Dioscoreaceas starches: Thermal, structural and rheological properties compared to commercial starches. J Therm Anal Calorim. 2017;127:1869–77.CrossRefGoogle Scholar
  14. 14.
    Gao M, Wu W, Liu S, Wang Y, Shen T. Thermal degradation and flame retardancy of rigid polyurethane foams containing a novel intumescent flame tetardant. J Therm Anal Calorim. 2014;117:1419–25.CrossRefGoogle Scholar
  15. 15.
    Carosio F, Fontaine G, Alongi J, Bourbigot S. Starch-based layer by layer assembly: efficient and sustainable approach to cotton fire protection. ACS Appl Mater Interfaces. 2015;7:12158–67.CrossRefGoogle Scholar
  16. 16.
    Tang G, Deng D, Chen J, Zhou K, Zhang H, Huang X, Zhou Z. The influence of organo-modified sepiolite on the flame-retardant and thermal properties of intumescent flame-retardant polylactide composites. J Therm Anal Calorim. 2017;130:763–72.CrossRefGoogle Scholar
  17. 17.
    Wang N, Xu G, Wu Y, Zhang J, Hu L, Luan H, Fang Q. The influence of expandable graphite on double-layered microcapsules in intumescent flame-retardant natural rubber composites. J Therm Anal Calorim. 2016;123:1239–51.CrossRefGoogle Scholar
  18. 18.
    Chapple S, Anandjiwala R, Ray SS. Mechanical, thermal, and fire properties of polylactide/starch blend/clay composites. J Therm Anal Calorim. 2013;113:703–12.CrossRefGoogle Scholar
  19. 19.
    Seetapan N, Fuongfuchat A, Gamonpilas C, Methacanon P, Pongjaruwat W, Limparyoon N. Effect of modified tapioca starch and xanthan gum on low temperature texture stability and dough viscoelasticity of a starch-based food gel. J Food Eng. 2013;119:446–53.CrossRefGoogle Scholar
  20. 20.
    Niazi MBK, Broekhuis AA. Oxidized potato starch based thermoplastic films: effect of combination of hydrophilic and amphiphilic plasticizers. Starch Starke. 2016;68:785–95.CrossRefGoogle Scholar
  21. 21.
    Hackenberg S, Verheyen C, Jekle M, Becker T. Effect of mechanically modified wheat flour on dough fermentation properties and bread quality. Eur Food Res Technol. 2017;243:287–96.CrossRefGoogle Scholar
  22. 22.
    Liu X, Wu J, Xu J, Mao D, Yang Y. The impact of heat-moisture treatment on the molecular structure and physicochemical properties of Coix seed starches. Starch Starke. 2016;68:662–74.CrossRefGoogle Scholar
  23. 23.
    Wang T, He F, Tian BQ, Shi LF, Liu HJ, Shi PP, Gong CR. Optimization of process for extracting starch from flue-cured tobacco leaves. Tob Sci Technol. 2012;6:80–3.Google Scholar
  24. 24.
    Zhu T, Jackson DS, Wehling RL, Geera B. Comparison of amylose determination methods and the development of a dual wavelenght iodine binding technique. Cereal Chem. 2008;85:51–8.CrossRefGoogle Scholar
  25. 25.
    Wang W, He F, Song C, Wang T, Dong Y, Yang Y, Lou Y, Gong C. Determination of contents of amylose and amylopectin in tobacco by dual wavelength spectrophotometry. Tob Sci Technol. 2009;5:44–7.Google Scholar
  26. 26.
    Zhu X, Xu Y, Zhou S, Yang J, Gao Y. Simultaneous structural and quantitative analysis of starch from flue-cured tobacco leaves by 13C CP/MAS NMR Spectroscopy. Curr Anal Chem. 2017. Scholar
  27. 27.
    Monnier X, Maigret JE, Lourdin D, Saiter A. Glass transition of anhydrous starch by fast scanning calorimetry. Carbohydr Polym. 2017;173:77–83.CrossRefGoogle Scholar
  28. 28.
    Zhou W, Yang J, Hong Y, Liu G, Zheng J, Gu Z. Impact of amylose content on starch physicochemical properties in transgenic sweet potato. Carbohydr Polym. 2015;122:417–27.CrossRefGoogle Scholar
  29. 29.
    Pineda-Gomez P, Angel-Gil NC, Valencia-Munoz C, Rosales-Rivera A, Rodriguez-Garcia ME. Thermal degradation of starch sources: green banana, potato, sassava, and corn-kinetic study by non-isothermal procedures. Starch Starke. 2014;66:691–9.CrossRefGoogle Scholar
  30. 30.
    Chen M, She S, Xu Z, Yin C, Zhou Z, Sun W, Li Y, Zhong F. Effect of exogenous softwood on thermal decomposition of reconstituted tobacco sheet. J Therm Anal Calorim. 2014;117:893–900.CrossRefGoogle Scholar
  31. 31.
    Zhou S, Ning M, Xu Y, Hu Y, Shu J, Wang C, Ge S, Tian Z, She S, He Q. Thermal degradation and combustion behavior of reconstituted tobacco sheet treated with ammonium polyphosphate. J Anal Appl Pyrol. 2013;100:223–9.CrossRefGoogle Scholar
  32. 32.
    Li J, Liu Y, Shi J, Wang Z, Hu L, Yang X, Wang C. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG-FTIR. Thermochim Acta. 2008;467:20–9.CrossRefGoogle Scholar
  33. 33.
    Shen DK, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol. 2009;100:6496–504.CrossRefGoogle Scholar
  34. 34.
    Fu P, Hu S, Xiang J, Li P, Huang D, Jiang L, Zhang A, Zhang J. FTIR study of pyrolysis products evolving from typical agricultural residues. J Anal Appl Pyrol. 2010;88:117–23.CrossRefGoogle Scholar
  35. 35.
    Worzakowska M. Thermal behavior, decomposition mechanism and some physicochemical properties of starch-g-poly(benzyl acrylate) copolymers. J Therm Anal Calorim. 2016;126:531–40.CrossRefGoogle Scholar
  36. 36.
    Tihay V, Gillard P. Pyrolysis gases released during the thermal decomposition of three Mediterranean species. J Anal Appl Pyrol. 2010;88:117–23.CrossRefGoogle Scholar
  37. 37.
    Giuntoli J, Jong W, Arvelakis S, Spliethoff H, Verkooijen AHM. Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis: dry distiller’s granins with soluble (DDGS) and chicken manure. J Anal Appl Pyrol. 2009;85:301–12.CrossRefGoogle Scholar
  38. 38.
    Coelho CCS, Cerquerira MA, Pereira RN, Pastrana LM, Freitas-Silva O, Vicenta AA, Cabral LMA, Teixeira JA. Effect of moderate electric fields in the properties of starch and chitosan films reinforced with microcrystalline cellulose. Carbohydr Polym. 2017;174:1181–91.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Xiaolan Zhu
    • 1
  • Qing He
    • 2
  • Yonghua Hu
    • 2
  • Ruijie Huang
    • 1
  • Ning Shao
    • 1
  • Yun Gao
    • 1
  1. 1.The USTC-Anhui Tobacco Joint Laboratory of Tobacco Chemistry, Research Center of Tobacco and HealthUniversity of Science and Technology of ChinaHefeiChina
  2. 2.The USTC-Anhui Tobacco Joint Laboratory of Tobacco Chemistry, Center of TechnologyChina Tobacco Anhui Industrial CorporationHefeiChina

Personalised recommendations