Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 1153–1165 | Cite as

Effect of ionic liquid on crystallization kinetics and crystal form transition of poly(vinylidene fluoride) blends

  • Hao Zhang
  • Weihe Shi
  • Haidong Cheng
  • Shuangjun Chen
  • Limin Wang


Semicrystalline poly(vinylidene fluoride) (PVDF) incorporated with ionic liquids(IL) exhibits applicability as electrolyte. In this paper, crystallization kinetics and crystal form transition of PVDF blending with ionic liquid (1-hexyl-3-methylimidazolium chloride, [HMIM]Cl) were studied by using differential scanning calorimetry, Fourier transform infrared spectroscopy (FTIR), and X-ray scattering. Tg of the PVDF/[HMIM]Cl blends are higher than that of the pure PVDF, suggesting the strong interaction between [HMIM]Cl and molecular chains of PVDF. With the ionic liquid content increased, both the conductivities of solvent casting and reheated films increased with little difference between them when the [HMIM]Cl content is same. For normalization, we introduce relative time tr to replace t to eliminate the influence of cooling rate. Pure PVDF had the fastest crystallization rate through the crystallization kinetics. By addition of the [HMIM]Cl, the tr1/2 has a positive correlation, while the XtA has negative correlation with the degree of crystallization of the PVDF/[HMIM]Cl blends. What’s more, [HMIM]Cl promotes the formation of PVDF β phase during the recrystallization process, which is confirmed by FTIR and X-ray scattering. This study gives a clue for the development of high-quality gel polymer electrolytes.


Poly(vinylidene fluoride) Electrolyte Ionic liquid Crystallization kinetics Crystal form transition 



The authors are grateful to National Natural Science Foundation of China (No. 21504042) for financial support of this work. This project is also funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.


  1. 1.
    Zhang SS, Tran DT. A simple approach for superior performance of lithium/sulphur batteries modified with a gel polymer electrolyte. J Mater Chem A. 2014;2(20):7383–8.CrossRefGoogle Scholar
  2. 2.
    Tamilarasan P, Ramaprabhu S. Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte. Energy. 2013;51:374–81.CrossRefGoogle Scholar
  3. 3.
    Jamaludin A, Ahmad Z, Ahmad ZA, Mohamad AA. A direct borohydride fuel cell employing a sago gel polymer electrolyte. Int J Hydrog Energy. 2010;35(20):11229–36.CrossRefGoogle Scholar
  4. 4.
    Ramesh S, Liew C, Ramesh K. Evaluation and investigation on the effect of ionic liquid onto PMMA–PVC gel polymer blend electrolytes. J Noncryst Solids. 2011;357(10):2132–8.CrossRefGoogle Scholar
  5. 5.
    Liew C, Ramesh S, Arof AK. Good prospect of ionic liquid based-poly(vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. Int J Hydrog Energy. 2014;39(6):2953–63.CrossRefGoogle Scholar
  6. 6.
    Dias JC, Lopes AC, Magalhães B, Botelho G, Silva MM, Esperança JMSS, et al. High performance electromechanical actuators based on ionic liquid/poly(vinylidene fluoride). Polym Test. 2015;48:199–205.CrossRefGoogle Scholar
  7. 7.
    Pandey GP, Hashmi SA. Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: effect of lithium salt addition. J Power Sources. 2013;243:211–8.CrossRefGoogle Scholar
  8. 8.
    Li G, Li Z, Zhang P, Zhang H, Wu Y. Research on a gel polymer electrolyte for Li-ion batteries. Pure Appl Chem. 2008;80(11):2553–63.CrossRefGoogle Scholar
  9. 9.
    Cao J, Zhu B, Xu Y. Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J Membr Sci. 2006;281(1–2):446–53.CrossRefGoogle Scholar
  10. 10.
    Bahader A, Gui H, Li Y, Xu P, Ding Y. Crystallization kinetics of PVDF filled with multi wall carbon nanotubes modified by amphiphilic ionic liquid. Macromol Res. 2015;23(3):273–83.CrossRefGoogle Scholar
  11. 11.
    Avrami M. Kinetics of phase change. II Transformation–time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.CrossRefGoogle Scholar
  12. 12.
    Kim SP, Kim SC. Crystallization kinetics of poly(ethylene terephthalate). Part I: kinetic equation with variable growth rate. Polym Eng Sci. 1991;31(2):110–5.CrossRefGoogle Scholar
  13. 13.
    Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12(3):150–8.CrossRefGoogle Scholar
  14. 14.
    Zhu Y, Liang C, Bo Y, Xu S. Non-isothermal crystallization behavior of compatibilized polypropylene/recycled polyethylene terephthalate blends. J Therm Anal Calorim. 2015;119(3):2005–13.CrossRefGoogle Scholar
  15. 15.
    Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D.S.C. Polymer. 1978;19(10):1142–4.CrossRefGoogle Scholar
  16. 16.
    Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37(3):568–75.CrossRefGoogle Scholar
  17. 17.
    Ziabicki HA. Theoretical analysis of oriented and non isothermal crystallization. Colloid Polym Sci. 1974;252(3):207–21.CrossRefGoogle Scholar
  18. 18.
    Chen S, Wang L. Confined crystallization kinetics and scale of semicrystalline block copolymer via non-isothermal method. J Therm Anal Calorim. 2017;127(3):2341–51.CrossRefGoogle Scholar
  19. 19.
    Wang L, Chen S. Crystallization behaviors of poly(vinylidene fluoride) and poly(methyl methacrylate)-block-poly(2-vinyl pyridine) block copolymer blends. J Therm Anal Calorim. 2016;125(1):215–30.CrossRefGoogle Scholar
  20. 20.
    Narula GK, Pillai PKC. Effect of substrate on the crystallization of polyvinylideneflouride/poly(methylmethacrylate) polyblend from solution. J Mater Sci Lett. 1990;9(2):130–2.CrossRefGoogle Scholar
  21. 21.
    Broadhurst MG, Davis GT, McKinney JE, Collins RE. Piezoelectricity and pyroelectricity in polyvinylidene fluoride—a model. J Appl Phys. 1978;49(10):4992–7.CrossRefGoogle Scholar
  22. 22.
    ChelakaraSatyanarayana K, Bolton K. Molecular dynamics simulations of α- to β-poly(vinylidene fluoride) phase change by stretching and poling. Polymer. 2012;53(14):2927–34.CrossRefGoogle Scholar
  23. 23.
    Mohammadi B, Yousefi AA, Bellah SM. Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym Test. 2007;26(1):42–50.CrossRefGoogle Scholar
  24. 24.
    Ranjan V, Nardelli MB, Bernholc J. Electric field induced phase transitions in polymers: a novel mechanism for high speed energy storage. Phys Rev Lett. 2012;108(8):87802.CrossRefGoogle Scholar
  25. 25.
    Achaby ME, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A. Piezoelectric β-polymorph formation and properties enhancement in graphene oxide–PVDF nanocomposite films. Appl Surf Sci. 2012;258(19):7668–77.CrossRefGoogle Scholar
  26. 26.
    Gomes J, SerradoNunes J, Sencadas V, Lancerosmendez S. Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct. 2010;19(6):65010.CrossRefGoogle Scholar
  27. 27.
    Sajkiewicz P, Wasiak A, Gocłowski Z. Phase transitions during stretching of poly(vinylidene fluoride). Eur Polym J. 1999;35(3):423–9.CrossRefGoogle Scholar
  28. 28.
    Mohajir BEE, Heymans N. Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer. 2001;42(13):5661–7.CrossRefGoogle Scholar
  29. 29.
    Ma Wenzhong, Zhang Jun, Wang Xiaolin. Crystallization and surface morphology of poly(vinylidene fluoride)/poly(methylmethacrylate) films by solution casting on different substrates. Appl Surf Sci. 2008;254(10):2947–54.CrossRefGoogle Scholar
  30. 30.
    Zhao X, Chen S, Zhang J, Zhang W, Wang X. Crystallization of PVDF in the PVDF/PMMA blends precipitated from their non-solvents: special “orientation” behavior, morphology, and thermal properties. J Cryst Growth. 2011;328(1):74–80.CrossRefGoogle Scholar
  31. 31.
    Lee SH, Cho HH. Crystal structure and thermal properties of poly(vinylidene fluoride)–carbon fiber composite films with various drawing temperatures and speeds. Fiber Polym. 2010;11(8):1146–51.CrossRefGoogle Scholar
  32. 32.
    Lau K, Liu Y, Chen H, Withers RL. Effect of annealing temperature on the morphology and piezoresponse characterisation of poly(vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy. Adv Condens Matter Phys. 2013;2013(1):1–5.CrossRefGoogle Scholar
  33. 33.
    Murasawa G, Nishioka A, Miyata K, Koda T, Cho H. Electrically excited oscillation and crystalline structure of a nanoclay/poly(vinylidene fluoride) composite film. J Intell Mater Syst Struct. 2011;22(18):2103–12.CrossRefGoogle Scholar
  34. 34.
    Ning HM, Hu N, Kamata T, Qiu JH, Han X, Zhou LM, et al. Improved piezoelectric properties of poly(vinylidene fluoride) nanocomposites containing multi-walled carbon nanotubes. Smart Mater Struct. 2013;22(6):5011.CrossRefGoogle Scholar
  35. 35.
    Gonçalves R, Martins PM, Caparrós C, Martins P, Benelmekki M, Botelho G, et al. Nucleation of the electroactive β-phase, dielectric and magnetic response of poly(vinylidene fluoride) composites with Fe2O3 nanoparticles. J Noncryst Solids. 2013;361:93–9.CrossRefGoogle Scholar
  36. 36.
    Aouada FA, Guilherme MR, Campese GM, Girotto EM, Rubira AF, Muniz EC. Electrochemical and mechanical properties of hydrogels based on conductive poly(3,4-ethylene dioxythiophene)/poly(styrenesulfonate) and PAAm. Polym Test. 2006;25(2):158–65. Scholar
  37. 37.
    Brazel CS, Rogers RD. Ionic liquids in polymer systems: solvents, additives, and novel applications. Washington: American Chemical Society; 2005.CrossRefGoogle Scholar
  38. 38.
    Tang J, Muchakayala R, Song S, Wang M, Kumar KN. Effect of EMIMBF4 ionic liquid addition on the structure and ionic conductivity of LiBF4-complexed PVDF-HFP polymer electrolyte films. Polym Test. 2016;50:247–54.CrossRefGoogle Scholar
  39. 39.
    Nakagawa K, Ishida Y. Annealing effects in poly(vinylidene fluoride) as revealed by specific volume measurements, differential scanning calorimetry, and electron microscopy. J Polym Sci Polym Phys Ed. 1973;11(11):2153–71.Google Scholar
  40. 40.
    Agmon N. The Grotthuss mechanism. Chem Phys Lett. 1995;244(5–6):456–62.CrossRefGoogle Scholar
  41. 41.
    Pomès R, Roux B. Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel. Biophys J. 2002;82(5):2304–20.CrossRefGoogle Scholar
  42. 42.
    Wessling B. Electrical conductivity in heterogeneous polymer systems. Berlin: Springer; 1987.CrossRefGoogle Scholar
  43. 43.
    Breuer O, Tchoudakov R, Narkis M, Siegmann A. Segregated structures in carbon black-containing immiscible polymer blends: HIPS/LLDPE systems. J Appl Polym Sci. 1997;64(6):1097–106.CrossRefGoogle Scholar
  44. 44.
    Zallen R, Penchina CM. The physics of amorphous solids. NewYork: Wiley; 1983.CrossRefGoogle Scholar
  45. 45.
    Phillip BM, Giannelis EP. Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nanocomposites. J Polym Sci Part A Polym Chem. 1995;33(7):1047–57.Google Scholar
  46. 46.
    Shalu S, Singh VK, Singh RK. Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C. 2015;3(28):7305–18.CrossRefGoogle Scholar
  47. 47.
    Zhai W, Zhu H, Wang L, Liu X, Yang H. Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM]BF4 for lithium ion batteries. Electrochim Acta. 2014;133:623–30.CrossRefGoogle Scholar
  48. 48.
    Wang X, Li Z, Cao X, Wang B, Qi G, Zhang X, et al. Abnormal increase of glass transition temperature of poly(propylene carbonate) modified with rubber particles. Polym Compos. 2012;33(9):1530–3.CrossRefGoogle Scholar
  49. 49.
    Wang X, Qi G, Zhang X, Gao J, Li B, Song Z, et al. The abnormal behavior of polymers glass transition temperature increase and its mechanism. Sci China Chem. 2012;55(5):713–7.CrossRefGoogle Scholar
  50. 50.
    Mejri R, Dias JC, Lopes AC, BebesHentati S, Silva MM, Botelho G, et al. Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene fluoride)/ionic liquid blends. Eur Polym J. 2015;71:304–13.CrossRefGoogle Scholar
  51. 51.
    Wang F, Lack A, Xie Z, Frübing P, Taubert A, Gerhard R. Ionic-liquid-induced ferroelectric polarization in poly(vinylidene fluoride) thin films. Appl Phys Lett. 2012;100(6):62903.CrossRefGoogle Scholar
  52. 52.
    Benz M, Euler WB. Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. J Appl Polym Sci. 2003;89(4):1093–100.CrossRefGoogle Scholar
  53. 53.
    Varga J, Menyhárd A. Effect of solubility and nucleating duality of N,N-Dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules. 2007;40(7):2422–31.CrossRefGoogle Scholar
  54. 54.
    Salimi A, Yousefi AA. Analysis method. Polym Test. 2003;22(6):699–704.CrossRefGoogle Scholar
  55. 55.
    Zhu Y, Li C, Na B, Lv R, Chen B, Zhu J. Polar phase formation and competition in the melt crystallization of poly (vinylidene fluoride) containing an ionic liquid. Mater Chem Phys. 2014;144(1–2):194–8.CrossRefGoogle Scholar
  56. 56.
    He L, Sun J, Wang X, Wang C, Song R, Hao Y. Facile and effective promotion of β crystalline phase in poly(vinylidene fluoride) via the incorporation of imidazolium ionic liquids. Polym Int. 2013;62(4):638–46.CrossRefGoogle Scholar
  57. 57.
    Correia DM, Gonçalves R, Ribeiro C, Sencadas V, Botelho G, Ribelles JLG, et al. Electrosprayed poly(vinylidene fluoride) microparticles for tissue engineering applications. RSC Adv. 2014;4(62):33013–21.CrossRefGoogle Scholar
  58. 58.
    Lanceros-Méndez S, Mano JF, Costa AM, Schmidt VH. FTIR and DSC studies of mechanically deformed β-PVDF films. J Macromol Sci Part B. 2001;40(3–4):517–27.CrossRefGoogle Scholar
  59. 59.
    Ribeiro C, Sencadas V, Ribelles JLG, Lanceros-Méndez S. Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes. Soft Mater. 2010;8(3):274–87.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations