Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 947–953 | Cite as

Preparation and crystallization of isotactic polypropylene composites filled by titanium dioxide-supported montmorillonite with a β-nucleating surface

  • Xin Dai
  • Zhenxi Wang
  • Xiaohang Zhang
  • Sheng Xu
  • Shangxi Zhang
  • Meng Cao
  • Xinde Jiang


To obtain multi-functional β-iPP composites, β-iPP composites are always filled by multiple fillers with α-nucleating ability. To prepare β-iPP/TiO2/MMT composites, TiO2-supported MMT with a β-nucleating surface was prepared through hydrolysis reaction of Tetra-n-butyl titanate and chemical reaction between pimelic acid and calcium ion. X-ray diffraction and scanning electron micrograph confirmed the formation of TiO2 on the surface of MMT. The differential scanning calorimeter and X-ray diffraction illustrated that the β-iPP composites filled by TiO2 and MMT had lower relative β-phase contents than β-iPP. It is observed by polarized optical microscope that addition of TiO2-supported MMT with a β-nucleating surface into iPP can increase the spherulite nuclei density and decrease the spherulite size significantly and obtain the β-iPP/TiO2/MMT composites with high relative β-phase content.


Polypropylene β-nucleation Montmorillonite Titanium dioxide 



The authors gratefully thank the financial support from Jiangxi Provincial Department of Education Natural Science Foundation of China (GJJ171016, GJJ151095, GJJ151112, and GJJ161127), the National Natural Science Foundation of China (51303074, 21706113 and 21702090), and Jiangxi Provincial Natural Science Foundation of China (20161BAB216104).


  1. 1.
    Yussuf AA, Al-Saleh MA, Al-Samhan MM, et al. Investigation of polypropylene-montmorillonite clay nanocomposite films containing a pro-degradant additive. J Polym Environ. 2017. Scholar
  2. 2.
    Al-Samhan M, Samuel J, Al-Attar F, et al. Comparative effects of mmt clay modified with two different cationic surfactants on the thermal and rheological properties of polypropylene nanocomposites. Int J Polym Sci. 2017;2:1–8.CrossRefGoogle Scholar
  3. 3.
    Dai X, Zhang Z, Chen C, et al. Non-isothermal crystallization kinetics of montmorillonite filled β-isotactic polypropylene nanocomposites. J Therm Anal Calorim. 2015;121:829–38.CrossRefGoogle Scholar
  4. 4.
    Wang S, Ajji A, Guo S, et al. Preparation of microporous polypropylene/titanium dioxide composite membranes with enhanced electrolyte uptake capability via melt extruding and stretching. Polymers. 2017. Scholar
  5. 5.
    Li X, Mao H, Liu Y, et al. Compatibilization of polyhedral oligomeric silsesquioxane for polypropylene–titanium dioxide composites and effect of the processing temperature. J Appl Polym Sci. 2017. Scholar
  6. 6.
    Valera-Zaragoza M, Yescas-Yescas A, Juarez-Arellano EA, et al. Immobilization of TiO2, nanoparticles on montmorillonite clay and its effect on the morphology of natural rubber nanocomposites. Polym Bull. 2014;71(6):1295–313.CrossRefGoogle Scholar
  7. 7.
    Shafiee S, Zarrebini M, Naghashzargar E, et al. Antibacterial performance of nano polypropylene filter media containing nano-TiO2, and clay particles. J Nanopart Res. 2015;17(10):1–9.CrossRefGoogle Scholar
  8. 8.
    Cagiao ME, Calleja FJB, Spieckermann F, et al. X-ray diffraction study of iPP/cand iPP/TiO2 composites relating to micromechanical properties. J Appl Polym Sci. 2012;124(4):3147–53.CrossRefGoogle Scholar
  9. 9.
    Cibulková Z, Vykydalová A, Chochulová A, et al. Thermooxidative stability of polypropylene/TiO2 and polypropylene/layered silicate nanocomposites. J Therm Anal Calorim. 2017;2:1–7.Google Scholar
  10. 10.
    Liu X, He A, Du K, et al. Isothermal crystallization behavior of exfoliated-PP/IMMT nanocomposites via insitu polymerization. J Polym Sci Part B Polym Phys. 2009;47:2215–25.CrossRefGoogle Scholar
  11. 11.
    Zhang Z, Li M, Wu L, et al. Preparation and crystallization of aluminum hydroxide-filled β-polypropylene composites. J Therm Anal Calorim. 2017;130:773–80.CrossRefGoogle Scholar
  12. 12.
    Xian J, Li M, Lin Z, et al. Crystallization and thermal behavior of recycled polypropylene composites containing nonmetallic printed circuit board powder and β -nucleating agents. J Therm Anal Calorim. 2017;130:869–78.CrossRefGoogle Scholar
  13. 13.
    Song B, Wang Y, Bai H, et al. Crystallization and melting behaviors of maleic anhydride grafted poly(propylene) nucleated by an aryl amide derivative. J Therm Anal Calorim. 2010;99:563–70.CrossRefGoogle Scholar
  14. 14.
    Wei Z, Zhang W, Chen G, et al. Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J Therm Anal Calorim. 2010;102:775–83.CrossRefGoogle Scholar
  15. 15.
    Wei Z, Zhang W, Chen G, et al. Crystallization behavior of isotactic polypropylene/magnesium salt whisker composites modified by compatibilizer PP-g-MAH. J Therm Anal Calorim. 2011;103:701–10.CrossRefGoogle Scholar
  16. 16.
    Suksut B, Schlarb AK. Influence of TiO2 nanoparticles on nonisothermal crystallization of PP in a wide range of cooling rates analyzed by fast scanning DSC. J Appl Polym Sci. 2016. Scholar
  17. 17.
    Menyhárd A, Varga J, Liber A, et al. Polymer blends based on the β-modification of polypropylene. Eur Polym J. 2005;41:669–77.CrossRefGoogle Scholar
  18. 18.
    Varga J. Beta-modification of polypropylene and its two-component systems. J Thermal Anal. 1989;35:1891–912.CrossRefGoogle Scholar
  19. 19.
    Gonzalez-Calderon JA, Vallejo-Montesinos J, Mata-Padilla JM, et al. Effective method for the synthesis of pimelic acid/TiO2, nanoparticles with a high capacity to nucleate β-crystals in isotactic polypropylene nanocomposites. J Mater Sci. 2015;50(24):1–9.CrossRefGoogle Scholar
  20. 20.
    Dai X, Zhang Z, Wang C, et al. Nucleation effect of montmorillonite with β-nucleating surface on polymorphous of melt-crystallized isotactic polypropylene nanocomposites. Compos Sci Technol. 2013;89:38–43.CrossRefGoogle Scholar
  21. 21.
    Varga J, Stoll K, Menyhárd A, et al. Crystallization of isotactic polypropylene in the presence of a β-nucleating agent based on a trisamide of trimesic acid. J Appl Polym Sci. 2011;121:1469–80.CrossRefGoogle Scholar
  22. 22.
    Turner-Jones A, Aizlewood J, Beckett D. Crystalline forms of isotactic polypropylene. Makromol Chem. 1964;75:134–58.CrossRefGoogle Scholar
  23. 23.
    Grim RE. Crystal structures of clay minerals and their X-ray identification. Earth Sci Rev. 1982;18(1):84–5.CrossRefGoogle Scholar
  24. 24.
    Benetti EM, Causin V, Marega C, et al. Morphological and structural characterization of polypropylene based nanocomposites. Polymer. 2005;46:8275–85.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.College of ScienceNanchang Institute of TechnologyNanchangChina

Personalised recommendations