Investigation of simultaneous formation of nano-sized CuO and ZnO on the thermal decomposition of ammonium perchlorate for composite solid propellants

  • Mohammad Mahdavi
  • Hossein Farrokhpour
  • Marjan Tahriri
Article
  • 10 Downloads

Abstract

Core/shell composites of CuC2O4·2H2O@AP and ZnC2O4·2H2O@AP were prepared from metal oxalates on suspended AP particles in ethanol. CuO and ZnO nano-metal oxides as the nano-catalysts were made from CuC2O4·2H2O and ZnC2O4·2H2O simultaneously by thermal decomposition of AP. The particle size of CuO nano-particles was very finer, and the ZnO particles showed a considerable growth during formation. The kinetic triplet of activation energy, frequency factor, and model of thermal decomposition of pure AP, CuC2O4·2H2O@AP, and ZnC2O4·2H2O@AP composites were estimated by applying three model-free (FWO, KAS, and Starink) and model-fitting (Starink) methods. Based on the thermal analysis, the CuC2O4@AP composite has better catalytic performance and the thermal decomposition temperature of AP decreased to about 126.44 °C.

Keywords

Electron affinity Ammonium perchlorate Nano-metal oxides Nano-catalyst Thermal decomposition 

References

  1. 1.
    Kadiresh PN, Sridhar BTN. Experimental study on ballistic behavior of an aluminized AP/HTPB propellant during accelerated aging. J Therm Anal Calorim. 2010;100:331–5.CrossRefGoogle Scholar
  2. 2.
    John A, Christopher J. Chemistry of pyrotechnics basic principles and theory. Chromatographia. 2012;75:79–80.CrossRefGoogle Scholar
  3. 3.
    Lang AJ, Vyazovkin S. Effect of pressure and sample type on decomposition of ammonium perchlorate. Combust Flame. 2006;145:779–90.CrossRefGoogle Scholar
  4. 4.
    Chen L, Li L, Li G. Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Alloys Compd. 2008;464:532–6.CrossRefGoogle Scholar
  5. 5.
    Eslami A, Hosseini SG, Bazrgary M. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim. 2012;113:721–30.CrossRefGoogle Scholar
  6. 6.
    Wang J, He S, Li Z, Jing X, Zhang M, Jiang Z. Synthesis of chrysalis-like CuO nanocrystals and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Chem Sci. 2009;121:1077–81.CrossRefGoogle Scholar
  7. 7.
    Ayoman E, Hosseini SGh. Synthesis of CuO nano powders by high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim. 2016;123:1213–24.CrossRefGoogle Scholar
  8. 8.
    Zheng MS, Wang Z, Wu JQ, Wang Q. Synthesis of nitrogen-doped ZnO nanocrystallites with one-dimensional structure and their catalytic activity for ammonium perchlorate decomposition. J Nanopart Res. 2010;12:2211–9.CrossRefGoogle Scholar
  9. 9.
    Zou M, Jiang X, Lu L, Wang X. Nano or micro? A mechanism on thermal decomposition of ammonium perchlorate catalyzed by cobalt oxalate. J Hazard Mater. 2012;225(226):124–30.CrossRefGoogle Scholar
  10. 10.
    Xu H, Wang X, Zhang L. Selective preparation of nanorods and micro-octahedrons of Fe2O3 and their catalytic performances for thermal decomposition of ammonium perchlorate. Powder Technol. 2008;185:176–80.CrossRefGoogle Scholar
  11. 11.
    Zheng X, Li P, Zheng S, Zhang Y. Thermal decomposition of ammonium perchlorate in the presence of Cu(OH)2·2Cr(OH)3 nanoparticles. Powder Technol. 2014;268:446–51.CrossRefGoogle Scholar
  12. 12.
    Joshi SS, Patil PR, Krishnamurthy VN. Thermal decomposition of ammonium perchlorate in the presence of nanosized ferric oxide. Def Sci J. 2008;58:721–7.CrossRefGoogle Scholar
  13. 13.
    Eslami A, Hosseini SG, Bazrgary M. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim. 2012;113:721–30.CrossRefGoogle Scholar
  14. 14.
    Hosseini SG, Ahmadi R, Ghavi A, Kashia A. Synthesis and characterization of α Fe2O3 mesoporous using SBA-15 silica as template and investigation of its catalytic activity for thermal decomposition of ammonium perchlorate particles. Powder Technol. 2015;278:316–22.CrossRefGoogle Scholar
  15. 15.
    Eslami A, Hosseini SG, Asadi V. The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles. Prog Org Coat. 2009;65:269–74.CrossRefGoogle Scholar
  16. 16.
    Mostaan H, Karimzadeh F, Abbasi MH. Non-isothermal kinetic studies on the formation of Al2O3/Nb composite. Thermochim Acta. 2010;511:32–6.CrossRefGoogle Scholar
  17. 17.
    Subramanian S, Valantina R, Ramanathan C. Structural and electronic properties of CuO, CuO2 and Cu2O nanoclusters—a DFT approach. Mater Sci. 2015;21:173–8.Google Scholar
  18. 18.
    Moravec VD, Klopcic SA, Chatterjee B, Jarrold CC. The electronic structure of ZnO and ZnF determined by anion photoelectron spectroscopy. Chem Phys. 2001;341:313–8.Google Scholar
  19. 19.
    Rahimi-Nasrabadi M, Pourmortazavi SM, Davoudi-Dehaghan AA, Hajimirsadeghi SS, Zahedi MM. Synthesis and characterization of copper oxalate and copper oxide nanoparticles by statistically optimized controlled precipitation and calcination of precursor. Cryst Struct Commun. 2013;15:40–77.Google Scholar
  20. 20.
    Ahmed MD. Synthesis identification and thermal analysis of coprecipitates of silver-(cobalt, nickel, copper and zinc) oxalate. Polyhedron. 1997;16:3012–30.Google Scholar
  21. 21.
    Chen L, Zhu D. The particle dimension controlling synthesis of a-MnO2 nanowires with enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Solid State Sci. 2014;27:69–72.CrossRefGoogle Scholar
  22. 22.
    Zhang L, Liu R, Yang H. Preparation and sonocatalytic activity of monodisperse porous bread-like CuO via thermal decomposition of copper oxalate precursors. Physica E. 2012;44:1592–7.CrossRefGoogle Scholar
  23. 23.
    Shang C, Barnabé A. Structural study and phase transition investigation in a simple synthesis of porous architected-ZnO nanopowder. Mater Charact. 2013;86:206–11.CrossRefGoogle Scholar
  24. 24.
    Athare AE, Nikumbh AK, Kolhe NH. Direct current electrical conductivity study of the thermal decomposition of copper(II) monohydrate and zinc(II) oxalate dehydrate. RJPBCS. 2013;4:110–28.Google Scholar
  25. 25.
    Khairetdinov EF, Mulina TV, Boldyrev VV. Nucleation mechanism during low-temperature decomposition of ammonium perchlorate. J Solid State. 1976;17:213–9.CrossRefGoogle Scholar
  26. 26.
    Voelk HR. Thermal decomposition and explosion of ammonium perchlorate propellant and ammonium perchlorate propellant up to 50 kilobars (5.0*109 N/m2). NASA TN D. 1970; 6013: 21–44.Google Scholar
  27. 27.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  28. 28.
    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.CrossRefGoogle Scholar
  29. 29.
    Hosseini SG, Ayoman E. Synthesis of α-Fe2O3 nanoparticles by dry high-energy ball milling method and investigation of their catalytic activity. J Therm Anal Calorim. 2016.  https://doi.org/10.1007/s10973-016-5969-6.Google Scholar
  30. 30.
    Babar Z, Malik AQ. Kinetics of thermal decomposition of nano magnesium oxide catalyzed ammonium perchlorate. J Chem Soc Pak. 2014;36:6–12.Google Scholar
  31. 31.
    Babar Z, Malik AQ. Thermal decomposition and kinetic evaluation of composite propellant material catalyzed with nano magnesium oxide. J Eng Sci. 2014;7:5–14.Google Scholar
  32. 32.
    Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advanced isoconversional methods complex mechanisms and isothermal predicted conversion-time curves. Chemom Intell Lab. 2009;96:219–26.CrossRefGoogle Scholar
  33. 33.
    Segal E. Rate equations of solid state reactions. Euclidean and fractal models. Rev Roum Chim. 2012;57:491–3.Google Scholar
  34. 34.
    Akbar J, Iqbal MS, Massey S, Masih R. Kinetics and mechanism of thermal degradation of pentose- and hexose-based carbohydrate polymers. Carbohyd Polym. 2012;90:1386–93.CrossRefGoogle Scholar
  35. 35.
    Burnham A. Computational aspects of kinetic analysis. Part D: the ICTAC kinetics project-multi-thermal-history model-model-fitting methods and their relation to isoconversional methods. Thermochim Acta. 2000;355:165–70.CrossRefGoogle Scholar
  36. 36.
    Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.CrossRefGoogle Scholar
  37. 37.
    Chen D, Gao X, Dollimore D. A generalized form of the Kissinger equation. Thermochim Acta. 1993;215:109–17.CrossRefGoogle Scholar
  38. 38.
    Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.CrossRefGoogle Scholar
  39. 39.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  40. 40.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand Part A. 1966;70:487–523.CrossRefGoogle Scholar
  41. 41.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  42. 42.
    Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Sci Technol. 1971;16:22–31.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Mohammad Mahdavi
    • 1
  • Hossein Farrokhpour
    • 2
  • Marjan Tahriri
    • 1
  1. 1.Department of ChemistryMalek-Ashtar University of TechnologyShahin-ShahrIslamic Republic of Iran
  2. 2.Department of ChemistryIsfahan University of TechnologyIsfahanIslamic Republic of Iran

Personalised recommendations