Skip to main content
Log in

Preparation of PMMA/mesoporous diatomite nanocomposites by in situ SR&NI ATRP

Enhancement of thermal stability

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Tailor-made poly(methyl methacrylate)/mesoporous diatomite nanocomposites were synthesized by in situ simultaneous reverse and normal initiation technique for atom transfer radical polymerization (SR&NI ATRP). Inherent characteristics of diatomite platelets were evaluated by using FTIR spectroscopy and nitrogen adsorption/desorption isotherm. Moreover, evaluation of pore size distribution and morphological studies were also performed by scanning and transmission electron microscopy. Conversion and molecular mass determinations were carried out using gas and size exclusion chromatography, respectively. Addition of 3 wt% pristine mesoporous diatomite leads to increase in conversion from 76 to 90%. Molecular mass of poly(methyl methacrylate) chains increases from 16,484 to 19,472 g mol−1 by addition of 3 wt% pristine mesoporous diatomite; however, polydispersity index values increase from 1.18 to 1.48. Appropriate agreement between theoretical and experimental molecular mass in combination with low PDI values can appropriately demonstrate the living nature of the polymerization. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 80.6 to 85.9 °C by adding 3 wt% of mesoporous diatomite platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Du H, Xu GQ, Chin WS. Synthesis, characterization, and nonlinear optical properties of hybridized CdS-polystyrene nanocomposites. Chem Mater. 2002;14:4473–9.

    Article  CAS  Google Scholar 

  2. Dolati S, Fereidoon A, Sabet AR. The effect of nanoclay on damaged areas of composite and nanocomposite laminates. Int J Nanosci Nanotechnol. 2013;9:25–32.

    Google Scholar 

  3. Janowska G, Mikołajczyk T, Olejnik M. Thermal properties and flammability of fibres made from polyimidoamide nanocomposite. J Therm Anal Calorim. 2007;88:843–9.

    Article  CAS  Google Scholar 

  4. Kodge A, Kalyane S, Lagashetty A. Synthesis, characterization and thermal study of poly (methyl methacrylate)-Co3O4 nanocomposite film. Int J Nano Dimens. 2012;3:53–7.

    Google Scholar 

  5. Pourasghar A, Kamarian S. Mechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber. Int J Nano Dimens. 2015;6:167–75.

    CAS  Google Scholar 

  6. Ghobadi E, Hemmati M, Khanbabaei G, Shojaei M, Asghari M. Effect of nanozeolite 13X on thermal and mechanical properties of Polyurethane nanocomposite thin films. Int J Nano Dimens. 2015;6:177–81.

    CAS  Google Scholar 

  7. Tayebi H, Bigdeli A, Torabinezhad A, Tayebi S. Polypropylene/Polystyrene in situ nano reinforced blends fiber: Morphology and properties. Int J Nano Dimens. 2015;6:305–14.

    CAS  Google Scholar 

  8. Khezri K, Ghasemi M, Fazli Y. Effect of mesoporous diatomite particles on the kinetics of SR&NI ATRP of styrene and butyl acrylate. Z Phys Chem. 2018. https://doi.org/10.1515/zpch-2017-1063.

    Google Scholar 

  9. Al-Degs YS, Tutunju MF, Shawabkeh RA. The feasibility of using diatomite and Mn—diatomite for remediation of Pb2+, Cu2+, and Cd2+ from water. Sep Sci Technol. 2000;35:2299–310.

    Article  CAS  Google Scholar 

  10. Jeong S, Jeon J, Lee J, Kim S. Optimal preparation of PCM/diatomite composites for enhancing thermal properties. Int J Heat Mass Transf. 2013;62:711–7.

    Article  CAS  Google Scholar 

  11. Jian Z, Qingwei P, Meihong N, Haiqiang S, Na L. Kinetics and equilibrium studies from the methylene blue adsorption on diatomite treated with sodium hydroxide. Appl Clay Sci. 2013;83–84:12–6.

    Google Scholar 

  12. Yuan P, Liu D, Tan D, Liu K, Yu H, Zhong Y, Yuan A, Yu W, He H. Surface silylation of mesoporous/macroporous diatomite (diatomaceous earth) and its function in Cu(II) adsorption: the effects of heating pretreatment. Microporous Mesoporous Mater. 2013;170:9–19.

    Article  CAS  Google Scholar 

  13. Nenadovic S, Nenadovic M, Kovacevic R, Matovic LJ, Matovic B, Jovanovic Z, Grbovic Novakovic J. Influence of diatomite microstructure on its adsorption capacity for Pb(II). Sci Sinter. 2009;41:309–17.

    Article  CAS  Google Scholar 

  14. Jia Y, Han W, Xiong G, Yang W. Diatomite as high performance and environmental friendly catalysts for phenol hydroxylation with H2O2. Sci Technol Adv Mater. 2007;8:106–9.

    Article  CAS  Google Scholar 

  15. Tsai W, Lai C, Hsien K. Characterization and adsorption properties of diatomaceous earth modified by hydrofluoric acid etching. J Colloid Interface Sci. 2006;297:749–54.

    Article  CAS  Google Scholar 

  16. Caliskan N, Kul AR, Alkan S, Sogut EG, Alacabey I. Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: a kinetic and equilibrium study. J Hazard Mater. 2011;193:27–36.

    Article  CAS  Google Scholar 

  17. Abbasian M, Khakpour Aali N. Nitroxide-mediated radical polymerization of styrene initiated from the surface of titanium oxide nanoparticles. J Nanostruct. 2016;6:38–45.

    CAS  Google Scholar 

  18. Sarsabili M, Kalantari K, Khezri K. SR&NI atom transfer radical random copolymerization of styrene and butyl acrylate in the presence of MPS-functionalized silica aerogel nanoparticles. J Therm Anal Calorim. 2016;126:1261–72.

    Article  CAS  Google Scholar 

  19. Abbasian M, Jaymand M, Ghadami MZ, Fathi A. Preparation of reactive and thermal stable hyperbranched graft copolymers/clay nanocomposite via ‘Living’ free radical polymerization. Int J Nanosci Nanotechnol. 2010;6:168–78.

    Google Scholar 

  20. Min K, Matyjaszewski K, Matyjaszewski K. Atom transfer radical polymerization in aqueous dispersed media. Cent Eur J Chem. 2009;7:657–74.

    CAS  Google Scholar 

  21. Karaman S, Karaipekli A, Sarı A, Bicer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Solar Energy Mater Solar Cells. 2011;95:1647–53.

    Article  CAS  Google Scholar 

  22. Li X, Bian C, Chen W, He J, Wang Z, Xu N, Xue G. Polyaniline on surface modification of diatomite: a novel way to obtain conducting diatomite fillers. Appl Surf Sci. 2003;207:378–83.

    Article  CAS  Google Scholar 

  23. Li X, Li X, Wang G. Fibrillar polyaniline/diatomite composite synthesized by one-step in situ polymerization method. Appl Surf Sci. 2005;249:266–70.

    Article  CAS  Google Scholar 

  24. Hu S, Zhu X, Hu W, Yan L, Cai C. Crystallization behaviors and foaming properties of diatomite-filled polypropylene composites. Polym Bull. 2013;70:517–33.

    Article  CAS  Google Scholar 

  25. Liang JZ. Effects of extrusion conditions on die-swell behavior of polypropylene/diatomite composite melts. Polym Test. 2008;27:936–40.

    Article  CAS  Google Scholar 

  26. Khezri K, Fazli Y. Characterization of diatomite platelets and its application for in situ atom transfer radical random copolymerization of styrene and butyl acrylate: normal approach. J Inorg Organomet Polym. 2017;27:266–74.

    Article  CAS  Google Scholar 

  27. Yu Y, Addai-Mensah J, Losic D. Functionalized diatom silica microparticles for removal of mercury ions. Sci Technol Adv Mater. 2012;13:015008 (11 pp).

    Article  Google Scholar 

  28. Garderen N, Clemens FJ, Mezzomo M, Bergmann CP, Graule T. Investigation of clay content and sintering temperature on attrition resistance of highly porous diatomite based material. Appl Clay Sci. 2011;52:115–21.

    Article  Google Scholar 

  29. Du Y, Yan J, Meng Q, Wang J, Dai H. Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure. Mater Chem Phys. 2012;133:907–12.

    Article  CAS  Google Scholar 

  30. Liu D, Yuan P, Tan D, Liu H, Wang T, Fan M, Zhu J, He H. Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products. J Colloid Interface Sci. 2012;388:176–84.

    Article  CAS  Google Scholar 

  31. Li M, Jahed NM, Min K, Matyjaszewski K. Preparation of Linear and Star-Shaped Block Copolymers by ATRP Using Simultaneous Reverse and Normal Initiation Process in Bulk and Miniemulsion. Macromolecules 2004;37:2434–41.

    Article  CAS  Google Scholar 

  32. Davoudizadeh S, Sarsabili M, Khezri K. Synthesis and Characterization of polystyrene/mesoporous diatomite composites via activators generated by electron transfer for atom transfer radical polymerization. Z Phys Chem. 2017;231:1543–58.

    Article  CAS  Google Scholar 

  33. Fazli Y, Khezri K. Well-defined PMMA/diatomite nanocomposites by in situ AGET ATRP: diatomite as an appropriate replacement for clay. J Polym Res. 2018;25:9–19.

    Article  Google Scholar 

  34. Khezri K. Polystyrene–mesoporous diatomite composites produced by in situ activators regenerated by electron transfer atom transfer radical polymerization. RSC Adv. 2016;6:109286–95.

    Article  CAS  Google Scholar 

  35. Fazli Y, Khezri K. Mesoporous diatomite-filled PMMA by in situ reverse atom transfer radical polymerization. Colloid Polym Sci. 2017;295:247–57.

    Article  CAS  Google Scholar 

  36. Khezri K, Fazli Y. Polystyrene/mesoporous diatomite composites by in situ simultaneous reverse and normal initiation technique for atom transfer radical polymerization. Polym Sci Ser B. 2017;59:109–16.

    Article  CAS  Google Scholar 

  37. Ver Meer MA, Narasimhan B, Shanks BH, Mallapragada SK. Effect of mesoporosity on thermal and mechanical properties of polystyrene/silica composites. ACS Appl Mater Interfaces. 2010;2:41–7.

    Article  CAS  Google Scholar 

  38. Sarsabili M, Rahmatolahzadeh R, Shobeiri SA, Hamadanian M, Farazin A, Khezri K. Reverse atom transfer radical random copolymerization of styrene and methyl methacrylate in the presence of diatomite nanoplatelets. Polym Adv Technol. 2018;29:424–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Fazli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khezri, K., Alijani, H. & Fazli, Y. Preparation of PMMA/mesoporous diatomite nanocomposites by in situ SR&NI ATRP. J Therm Anal Calorim 132, 937–945 (2018). https://doi.org/10.1007/s10973-018-7011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7011-7

Keywords

Navigation