Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 779–784 | Cite as

Effects of mixing malic acid and salicylic acid with metal oxides in medium- to low-temperature isothermal conditions, as determined using the thermal activity monitor IV

  • Quan Wang
  • Shang-Hao Liu
  • An-Chi Huang
  • Chung-Fu Huang
  • Yu-Kai Chuang
  • Chi-Min Shu


Cosmetic products that contain malic, salicylic, hyaluronic acids and various antioxidants, which are popular worldwide, have made cosmeceuticals a popular cosmetic production sector. Typically, each component of cosmetics, regardless of its activity, may affect the thermal stability of the product. To investigate the thermal stability of regular cosmetics of interest, thermal activity monitor IV was applied to determine the thermokinetic parameters for stability assessment. Arrhenius equations and thermal safety software (for kinetic calculations and numerical simulations) were used. Considering the numerous additives in cosmetic products, individual components of cosmetic material mixed with other components are the primary factors for product deterioration. We examined samples of pure malic acid, pure salicylic acid, and individual acids mixed with copper or iron oxide under isothermal surroundings at 80, 90, 100, 110, and 120 °C. The results of isothermal tests were compared with nonisothermal tests using Arrhenius equations, ASTM E698 method, and Flynn–Wall–Ozawa methods. The value of Ea between malic acid and salicylic acid became lower when mixed with CuO. The findings can be used to identify the optimal parameters for product design and establish a malic and salicylic acid database for developing a proactive loss prevention protocol.


Cosmetics Thermal stability Thermokinetic parameters Arrhenius equations Thermal safety software 



This study was funded by the Anhui Province Education Department Natural Sciences Key Fund, China (Grant No. KJ2017A078). The assistance of Prof. Olive J. Hao, YunTech, Feng Tay Chair Professor is acknowledged.


  1. 1.
    Iwegbue CM, Emakunu OS, Nwajei GE, Bassey FI, Martincigh BS. Evaluation of human exposure to metals from some commonly used bathing soaps and shower gels in Nigeria. Regul Toxicol Pharmacol. 2017;83:38–45.CrossRefGoogle Scholar
  2. 2.
    Kaličanin B, Velimirović D. A study of the possible harmful effects of cosmetic beauty products on human health. Biol Trace Elem Res. 2016;170(2):476–84.CrossRefGoogle Scholar
  3. 3.
    Shimpi SS. Structural equation modeling for men’s cosmetics behavior research. Indian J Market. 2016;46(7):36–54.CrossRefGoogle Scholar
  4. 4.
    Ingram AL, Nickels TM, Maraoulaite DK, White RL. Thermogravimetry–mass spectrometry investigations of montmorillonite interlayer water perturbations caused by aromatic acid adsorbates. J Therm Anal Calorim. 2016;126(3):1157–66.CrossRefGoogle Scholar
  5. 5.
    Gálico DA, Nova CV, Bannach G. Polymorphism in propyl gallate recrystallized with acetone. J Therm Anal Calorim. 2016;128(1):611–4.CrossRefGoogle Scholar
  6. 6.
    Bezerra GSN, Pereira MAV, Ostrosky EA, Barbosa EG, de Moura MdFV, Ferrari M, Aragão CFS, Gomes APB. Compatibility study between ferulic acid and excipients used in cosmetic formulations by TG/DTG, DSC and FTIR. J Therm Anal Calorim. 2016;127(2):1683–91.CrossRefGoogle Scholar
  7. 7.
    Iwegbue CMA. Safety evaluation of the metals in some brands of nail polish in Nigeria. J Verbrauch Lebensm. 2016;11(3):271–8.CrossRefGoogle Scholar
  8. 8.
    Telegdi J, Trif L, Nagy E, Mihály J, Molnár N. New comonomers in malic acid polyesters. J Therm Anal Calorim. 2017;129(2):991–1000.CrossRefGoogle Scholar
  9. 9.
    Van Staden J, Volschenk H, Van Vuuren H, Viljoen-Bloom M. Malic acid distribution and degradation in grape must during skin contact: the influence of recombinant malo-ethanolic wine yeast strains. S Afr J Enol Vitic. 2017;26(1):16–20.Google Scholar
  10. 10.
    Grimes PE. The safety and efficacy of salicylic acid chemical peels in darker racial-ethnic groups. Dermatol Surg. 1999;25(1):18–22.CrossRefGoogle Scholar
  11. 11.
    Huang AC, Chen WC, Huang CF, Zhao JY, Deng J, Shu CM. Thermal stability simulations of 1,1-bis(tert-butylperoxy)-3,3,5 trimethylcyclohexane mixed with metal ions. J Therm Anal Calorim. 2017;130(2):949–57.CrossRefGoogle Scholar
  12. 12.
    Chen WC, Lin JR, Liao MS, Wang YW, Shu CM. Green approach to evaluating the thermal hazard reaction of peracetic acid through various kinetic methods. J Therm Anal Calorim. 2016;127(1):1019–26.CrossRefGoogle Scholar
  13. 13.
    Willms T, Kryk H, Oertel J, Lu X, Hampel U. Reactivity of t-butyl hydroperoxide and t-butyl peroxide toward reactor materials measured by a microcalorimetric method at 30° C. J Therm Anal Calorim. 2016;128(1):319–33.CrossRefGoogle Scholar
  14. 14.
    Wang Y, Xia X, Zhu J, Li Y, Wang X, Hu X. Catalytic activity of nanometer-sized CuO/Fe2O3 on thermal decompositon of AP and combustion of AP-based propellant. Combust Sci Technol. 2010;183(2):154–62.CrossRefGoogle Scholar
  15. 15.
    Tsai LC, Tsai YT, Lin CP, Liu SH, Wu TC, Shu CM. Isothermal versus non-isothermal calorimetric technique to evaluate thermokinetic parameters and thermal hazard of tert-butyl peroxy-2-ethyl hexanoate. J Therm Anal Calorim. 2012;109(3):1291–6.CrossRefGoogle Scholar
  16. 16.
    Tsai YT, You ML, Qian XM, Shu CM. Calorimetric techniques combined with various thermokinetic models to evaluate incompatible hazard of tert-butyl peroxy-2-ethyl hexanoate mixed with metal ions. Ind Eng Chem Res. 2013;52(24):8206–15.CrossRefGoogle Scholar
  17. 17.
    Wang CP, Yang Y, Tsai YT, Deng J, Shu CM. Spontaneous combustion in six types of coal by using the simultaneous thermal analysis-Fourier transform infrared spectroscopy technique. J Therm Anal Calorim. 2016;126(3):1591–602.CrossRefGoogle Scholar
  18. 18.
    Deng J, Zhao JY, Xiao Y, Zhang YN, Huang AC, Shu CM. Thermal analysis of the pyrolysis and oxidation behaviour of 1/3 coking coal. J Therm Anal Calorim. 2017;129(3):1779–86.CrossRefGoogle Scholar
  19. 19.
    Whitmore MW, Wilberforce JK. Use of the accelerating rate calorimeter and the thermal activity monitor to estimate stability temperatures. J Loss Prev Process Ind. 1993;6(2):95–101.CrossRefGoogle Scholar
  20. 20.
    Nafisi S, Saboury AA, Keramat N, Neault JF, Tajmir-Riahi HA. Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue. J Mol Struct. 2007;827(1):35–43.CrossRefGoogle Scholar
  21. 21.
    Hou HY, Liao TS, Duh YS, Shu CM. Thermal hazard studies for dicumyl peroxide by DSC and TAM. J Therm Anal Calorim. 2006;83(1):167–71.CrossRefGoogle Scholar
  22. 22.
    Yao J, Tian L, Wang Y, Djah A, Wang F, Chen H, Su C, Zhuang R, Zhou Y, et al. Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: an in vitro approach. Ecotoxicol Environ Saf. 2008;69(2):289–95.CrossRefGoogle Scholar
  23. 23.
    Hou HY, Shu CM, Duh YS. Exothermic decomposition of cumene hydroperoxide at low temperature conditions. AIChE J. 2001;47(8):1893–6.CrossRefGoogle Scholar
  24. 24.
    Chiang CL, Liu SH, Lin YC, Shu CM. Thermal release hazard for the decomposition of cumene hydroperoxide in the presence of incompatibles using differential scanning calorimetry, thermal activity monitor III, and thermal imaging camera. J Therm Anal Calorim. 2016;127(1):1061–9.CrossRefGoogle Scholar
  25. 25.
    Hao YH, Huang Z, Ye QQ, Wang JW, Yang XY, Fan XY, Li YL, Peng YW. A comparison study on non-isothermal decomposition kinetics of chitosan with different analysis methods. J Therm Anal Calorim. 2016;128(2):1077–91.CrossRefGoogle Scholar
  26. 26.
    Saha B, Ghoshal A. Thermal degradation kinetics of poly (ethylene terephthalate) from waste soft drinks bottles. Chem Eng J. 2005;111(1):39–43.CrossRefGoogle Scholar
  27. 27.
    Wang J, Jia H, Tang Y, Xiong X, Ding L. Thermal stability and non-isothermal crystallization kinetics of metallocene poly (ethylene–butene–hexene)/high fluid polypropylene copolymer blends. Thermochim Acta. 2017;647:55–61.CrossRefGoogle Scholar
  28. 28.
    Bisinella RZ, Ribeiro JC, de Oliveira CS, Colman TA, Schnitzler E, Masson ML. Some instrumental methods applied in food chemistry to characterise lactulose and lactobionic acid. Food Chem. 2017;220:295–8.CrossRefGoogle Scholar
  29. 29.
    Braud C, Bunel C, Vert M. Poly (β-malic acid): a new polymeric drug-carrier. Polym Bull. 1985;13(4):293–9.CrossRefGoogle Scholar
  30. 30.
    Matyasovszky N, Tian M, Chen A. Kinetic study of the electrochemical oxidation of salicylic acid and salicylaldehyde using UV/vis spectroscopy and multivariate calibration. J Phys Chem A. 2009;113(33):9348–53.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Quan Wang
    • 1
  • Shang-Hao Liu
    • 1
  • An-Chi Huang
    • 2
  • Chung-Fu Huang
    • 2
  • Yu-Kai Chuang
    • 3
  • Chi-Min Shu
    • 3
    • 4
  1. 1.Department of Ammunition Engineering and Explosion TechnologyAnhui University of Science and TechnologyHuainanChina
  2. 2.Graduate School of Engineering Science and TechnologyNational Yunlin University of Science and Technology (YunTech)YunlinTaiwan, ROC
  3. 3.Department of Safety, Health, and Environmental EngineeringYunTechYunlinTaiwan, ROC
  4. 4.Center for Process Safety and Industrial Disaster PreventionYunTechYunlinTaiwan, ROC

Personalised recommendations