Skip to main content
Log in

Effects of mixing malic acid and salicylic acid with metal oxides in medium- to low-temperature isothermal conditions, as determined using the thermal activity monitor IV

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cosmetic products that contain malic, salicylic, hyaluronic acids and various antioxidants, which are popular worldwide, have made cosmeceuticals a popular cosmetic production sector. Typically, each component of cosmetics, regardless of its activity, may affect the thermal stability of the product. To investigate the thermal stability of regular cosmetics of interest, thermal activity monitor IV was applied to determine the thermokinetic parameters for stability assessment. Arrhenius equations and thermal safety software (for kinetic calculations and numerical simulations) were used. Considering the numerous additives in cosmetic products, individual components of cosmetic material mixed with other components are the primary factors for product deterioration. We examined samples of pure malic acid, pure salicylic acid, and individual acids mixed with copper or iron oxide under isothermal surroundings at 80, 90, 100, 110, and 120 °C. The results of isothermal tests were compared with nonisothermal tests using Arrhenius equations, ASTM E698 method, and Flynn–Wall–Ozawa methods. The value of Ea between malic acid and salicylic acid became lower when mixed with CuO. The findings can be used to identify the optimal parameters for product design and establish a malic and salicylic acid database for developing a proactive loss prevention protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Iwegbue CM, Emakunu OS, Nwajei GE, Bassey FI, Martincigh BS. Evaluation of human exposure to metals from some commonly used bathing soaps and shower gels in Nigeria. Regul Toxicol Pharmacol. 2017;83:38–45.

    Article  CAS  PubMed  Google Scholar 

  2. Kaličanin B, Velimirović D. A study of the possible harmful effects of cosmetic beauty products on human health. Biol Trace Elem Res. 2016;170(2):476–84.

    Article  CAS  PubMed  Google Scholar 

  3. Shimpi SS. Structural equation modeling for men’s cosmetics behavior research. Indian J Market. 2016;46(7):36–54.

    Article  Google Scholar 

  4. Ingram AL, Nickels TM, Maraoulaite DK, White RL. Thermogravimetry–mass spectrometry investigations of montmorillonite interlayer water perturbations caused by aromatic acid adsorbates. J Therm Anal Calorim. 2016;126(3):1157–66.

    Article  CAS  Google Scholar 

  5. Gálico DA, Nova CV, Bannach G. Polymorphism in propyl gallate recrystallized with acetone. J Therm Anal Calorim. 2016;128(1):611–4.

    Article  CAS  Google Scholar 

  6. Bezerra GSN, Pereira MAV, Ostrosky EA, Barbosa EG, de Moura MdFV, Ferrari M, Aragão CFS, Gomes APB. Compatibility study between ferulic acid and excipients used in cosmetic formulations by TG/DTG, DSC and FTIR. J Therm Anal Calorim. 2016;127(2):1683–91.

    Article  CAS  Google Scholar 

  7. Iwegbue CMA. Safety evaluation of the metals in some brands of nail polish in Nigeria. J Verbrauch Lebensm. 2016;11(3):271–8.

    Article  CAS  Google Scholar 

  8. Telegdi J, Trif L, Nagy E, Mihály J, Molnár N. New comonomers in malic acid polyesters. J Therm Anal Calorim. 2017;129(2):991–1000.

    Article  CAS  Google Scholar 

  9. Van Staden J, Volschenk H, Van Vuuren H, Viljoen-Bloom M. Malic acid distribution and degradation in grape must during skin contact: the influence of recombinant malo-ethanolic wine yeast strains. S Afr J Enol Vitic. 2017;26(1):16–20.

    Google Scholar 

  10. Grimes PE. The safety and efficacy of salicylic acid chemical peels in darker racial-ethnic groups. Dermatol Surg. 1999;25(1):18–22.

    Article  CAS  PubMed  Google Scholar 

  11. Huang AC, Chen WC, Huang CF, Zhao JY, Deng J, Shu CM. Thermal stability simulations of 1,1-bis(tert-butylperoxy)-3,3,5 trimethylcyclohexane mixed with metal ions. J Therm Anal Calorim. 2017;130(2):949–57.

    Article  CAS  Google Scholar 

  12. Chen WC, Lin JR, Liao MS, Wang YW, Shu CM. Green approach to evaluating the thermal hazard reaction of peracetic acid through various kinetic methods. J Therm Anal Calorim. 2016;127(1):1019–26.

    Article  CAS  Google Scholar 

  13. Willms T, Kryk H, Oertel J, Lu X, Hampel U. Reactivity of t-butyl hydroperoxide and t-butyl peroxide toward reactor materials measured by a microcalorimetric method at 30° C. J Therm Anal Calorim. 2016;128(1):319–33.

    Article  CAS  Google Scholar 

  14. Wang Y, Xia X, Zhu J, Li Y, Wang X, Hu X. Catalytic activity of nanometer-sized CuO/Fe2O3 on thermal decompositon of AP and combustion of AP-based propellant. Combust Sci Technol. 2010;183(2):154–62.

    Article  CAS  Google Scholar 

  15. Tsai LC, Tsai YT, Lin CP, Liu SH, Wu TC, Shu CM. Isothermal versus non-isothermal calorimetric technique to evaluate thermokinetic parameters and thermal hazard of tert-butyl peroxy-2-ethyl hexanoate. J Therm Anal Calorim. 2012;109(3):1291–6.

    Article  CAS  Google Scholar 

  16. Tsai YT, You ML, Qian XM, Shu CM. Calorimetric techniques combined with various thermokinetic models to evaluate incompatible hazard of tert-butyl peroxy-2-ethyl hexanoate mixed with metal ions. Ind Eng Chem Res. 2013;52(24):8206–15.

    Article  CAS  Google Scholar 

  17. Wang CP, Yang Y, Tsai YT, Deng J, Shu CM. Spontaneous combustion in six types of coal by using the simultaneous thermal analysis-Fourier transform infrared spectroscopy technique. J Therm Anal Calorim. 2016;126(3):1591–602.

    Article  CAS  Google Scholar 

  18. Deng J, Zhao JY, Xiao Y, Zhang YN, Huang AC, Shu CM. Thermal analysis of the pyrolysis and oxidation behaviour of 1/3 coking coal. J Therm Anal Calorim. 2017;129(3):1779–86.

    Article  CAS  Google Scholar 

  19. Whitmore MW, Wilberforce JK. Use of the accelerating rate calorimeter and the thermal activity monitor to estimate stability temperatures. J Loss Prev Process Ind. 1993;6(2):95–101.

    Article  Google Scholar 

  20. Nafisi S, Saboury AA, Keramat N, Neault JF, Tajmir-Riahi HA. Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue. J Mol Struct. 2007;827(1):35–43.

    Article  CAS  Google Scholar 

  21. Hou HY, Liao TS, Duh YS, Shu CM. Thermal hazard studies for dicumyl peroxide by DSC and TAM. J Therm Anal Calorim. 2006;83(1):167–71.

    Article  CAS  Google Scholar 

  22. Yao J, Tian L, Wang Y, Djah A, Wang F, Chen H, Su C, Zhuang R, Zhou Y, et al. Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: an in vitro approach. Ecotoxicol Environ Saf. 2008;69(2):289–95.

    Article  CAS  PubMed  Google Scholar 

  23. Hou HY, Shu CM, Duh YS. Exothermic decomposition of cumene hydroperoxide at low temperature conditions. AIChE J. 2001;47(8):1893–6.

    Article  CAS  Google Scholar 

  24. Chiang CL, Liu SH, Lin YC, Shu CM. Thermal release hazard for the decomposition of cumene hydroperoxide in the presence of incompatibles using differential scanning calorimetry, thermal activity monitor III, and thermal imaging camera. J Therm Anal Calorim. 2016;127(1):1061–9.

    Article  CAS  Google Scholar 

  25. Hao YH, Huang Z, Ye QQ, Wang JW, Yang XY, Fan XY, Li YL, Peng YW. A comparison study on non-isothermal decomposition kinetics of chitosan with different analysis methods. J Therm Anal Calorim. 2016;128(2):1077–91.

    Article  CAS  Google Scholar 

  26. Saha B, Ghoshal A. Thermal degradation kinetics of poly (ethylene terephthalate) from waste soft drinks bottles. Chem Eng J. 2005;111(1):39–43.

    Article  CAS  Google Scholar 

  27. Wang J, Jia H, Tang Y, Xiong X, Ding L. Thermal stability and non-isothermal crystallization kinetics of metallocene poly (ethylene–butene–hexene)/high fluid polypropylene copolymer blends. Thermochim Acta. 2017;647:55–61.

    Article  CAS  Google Scholar 

  28. Bisinella RZ, Ribeiro JC, de Oliveira CS, Colman TA, Schnitzler E, Masson ML. Some instrumental methods applied in food chemistry to characterise lactulose and lactobionic acid. Food Chem. 2017;220:295–8.

    Article  CAS  PubMed  Google Scholar 

  29. Braud C, Bunel C, Vert M. Poly (β-malic acid): a new polymeric drug-carrier. Polym Bull. 1985;13(4):293–9.

    Article  CAS  Google Scholar 

  30. Matyasovszky N, Tian M, Chen A. Kinetic study of the electrochemical oxidation of salicylic acid and salicylaldehyde using UV/vis spectroscopy and multivariate calibration. J Phys Chem A. 2009;113(33):9348–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Anhui Province Education Department Natural Sciences Key Fund, China (Grant No. KJ2017A078). The assistance of Prof. Olive J. Hao, YunTech, Feng Tay Chair Professor is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Hao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Liu, SH., Huang, AC. et al. Effects of mixing malic acid and salicylic acid with metal oxides in medium- to low-temperature isothermal conditions, as determined using the thermal activity monitor IV. J Therm Anal Calorim 133, 779–784 (2018). https://doi.org/10.1007/s10973-018-7003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7003-7

Keywords

Navigation