Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 773–777 | Cite as

Study of bacterial sensitivity in zinc sulfate solutions by microcalorimetry

  • Ricardo Aveledo
  • Alberto Aveledo
  • Cristina Vázquez
  • Natividad Lago
  • Marta M. Mato
  • José L. Legido
Article
  • 26 Downloads

Abstract

Zinc sulfate is an inorganic compound and dietary supplement. It has shown antimicrobial effects on certain pathogens and may contribute to the treatment or prevention of infections. In this study, the bacterial growth of Pseudomonas aeruginosa, which is a pathogen involved in several life-threatening infections to the human body, is assessed by microcalorimetry using different concentrations of zinc sulfate. Bacteria growth monitoring has been demonstrated using microcalorimetric techniques. Dissolutions of zinc sulfate were prepared with concentrations from 0 to 250 mM. A suspension of 106 CFU mL−1 of Pseudomona aeruginosa and as a culture medium, a liquid soya-casein-digested liquid were used. The measurements were carried out in a Calvet microcalorimeter at constant temperature of 309.65 K. The reference cell was filled with 6 mL of culture medium, 1 mL of the metallic dissolution, and 1 mL of mineral-medicinal water. In the experimental cell, the latter was replaced by the bacterial suspension. The data were collected by a data acquisition and processing system, at intervals of 22.2 s for 48 h. Representing the difference in heat output generated between the experimental and control cells versus time, the bacterial growth curves were obtained and the thermograms were compared using different concentrations of the metallic dissolution. This study highlights the role of zinc sulfate in suppressing bacteria growth at certain concentrations measured by microcalorimetric techniques. Such thermodynamic technique evidences the potential use of metallic dissolution in the medical industry, among others, in order to take advantage of its bactericide property.

Keywords

Microcalorimetry Metabolism Bacteria Pseudomonas aeruginosa Zinc sulfate 

Notes

Acknowledgements

The authors are grateful to Miguel Ramos for the support in the preparations of the metallic dissolutions. They thank Maria Perfecta Salgado Gonzalez for her collaboration with the technical measures. Financial support was provided by the projects EM 2012/141, CN 2012/285, and “Agrupación Estratégica de Biomedicina (INBIOMED)” by “Xunta de Galicia” and the project FIS 2011-23322 funded by Ministry of Science and Innovation of Spain. All these projects are co-funded with FEDER funds.

References

  1. 1.
    Calvet E, Prat H. Microcalorimétrie: applications physico-chimiques et biologiques. Paris: Masson el Cie Editeurs; 1956.Google Scholar
  2. 2.
    James AM. Calorimetry. Past, present and future. In: James AM, editor. Thermal and energetic studies of cellular biological systems. Bristol: IOP Publishing Ltd; 1987.Google Scholar
  3. 3.
    Arias VJ, Koutsos EA. Effects of copper source and level on intestinal physiology and growth of broiler chickens. Poult Sci. 2006;85:999–1007.CrossRefGoogle Scholar
  4. 4.
    Aerestrup FM, Hasman H. Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection. Vet Microbiol. 2004;100:83–9.CrossRefGoogle Scholar
  5. 5.
    Lago N, Legido JL, Paz-Andrade MI, Arias I, Casas LM. Microcalorimetric study of the growth and metabolism of Pseudomonas aeruginosa. J Therm Anal Calorim. 2011;105:651–5.CrossRefGoogle Scholar
  6. 6.
    Ma J, Qi WT, Yang LN, Yu WT, Xie YB, Wang W. Microcalorimetric study on the growth and metabolism of microencapsulated microbial cell culture. J Microbiol Methods. 2007;68:172–7.CrossRefGoogle Scholar
  7. 7.
    Trampuz A, Salzmann S, Antheaume J, Daniela AU. Microcalorimetry: a novel method for detection of microbial contamination in platelet products. Transfusion. 2007;47:1643–50.CrossRefGoogle Scholar
  8. 8.
    Tan MR, Ren YS, Yan D, Meng XH, Cheng LH, Qiu Ll, et al. Detection of microorganisms in different states based on microcalorimetry. J Therm Anal Calorim. 2012;109(2):1069–75.CrossRefGoogle Scholar
  9. 9.
    Braissant O, Wirz D, Göpfert B, Daniels AU. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett. 2010;303:1–8.CrossRefGoogle Scholar
  10. 10.
    Murray P, Rosenthal K, Pfaller M. Microbiologia medica. 6a ed. Amsterdam: Elsevier; 2009.Google Scholar
  11. 11.
    Forbes B, Sahm D, Weissfeld AB. Diagnostico microbiologico. 12a ed. Madrid: Medica- Panamericana; 2007.Google Scholar
  12. 12.
    British national formulary: BNF 69, 69 ed. British Medical Association; 2015. p. 700. ISBN 9780857111562.Google Scholar
  13. 13.
    Hobman JL, Crossman LC. Bacterial antimicrobial metal ion resistance. J Med Microbiol. 2014;64:471–97.CrossRefGoogle Scholar
  14. 14.
    Surjawidjaja JE, Hidayat A, Lesmana M. Growth inhibition of enteric pathogens by zinc sulfate: an in vitro study. Med Princ Pract. 2004;13(5):286–9.CrossRefGoogle Scholar
  15. 15.
    Zaharia DC, Iancu C, Steriade AT, Muntean AA, Balint O, Popa VT, et al. MicroDSC study of Staphylococcus epidermidis growth. BMC Microbiol. 2010;10:322.CrossRefGoogle Scholar
  16. 16.
    Lago N, Legido JL, Casas L, Arias I. Microcalorimetric study of the growth of Enterococcus faecalis in an enriched culture medium. J Therm Anal Calorim. 2012;108(2):665–70.CrossRefGoogle Scholar
  17. 17.
    Lago N, Legido JL, Arias I, Casas LM. Comparative study of microcalorimetric behavior of Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae. Pol J Microbiol. 2012;61(3):199–204.Google Scholar
  18. 18.
    Bonkat G, Bachman A, Solokhina A, Widmer AF, Frei R, Gasser T, et al. Growth of mycobacteria in urine determined by isothermal microcalorimetry: implications for urogenital tuberculosis and other mycobacterial infections. Urology. 2012;80(5):1163e9–12.CrossRefGoogle Scholar
  19. 19.
    Bonkat G, Braissant O, Malte R, Solokhina A, Widmer AF, Frei R, et al. Standardization of isothermal microcalorimetry in urinary tract detection by using artificial urine. World J Urol. 2013;31(3):553–7.CrossRefGoogle Scholar
  20. 20.
    Kong W-J, Xing X-Y, Xiao XH, Zhao Y-L, Wei J-H, Wang JB, et al. Effect of berberine on Escherichia coli, Bacillus subtilis, and their mixtures as determined by isothermal microcalorimetry. Appl Microbiol Biotechnol. 2012;96:503–10.CrossRefGoogle Scholar
  21. 21.
    Vazquez C, Lago N, Legido JL, Arias I, Casas LM, Mato MM. Microcalorimetric study of the growth of Enterococcus faecalis, Klebsiella pneumoniae and their mixtures in an enriched culture medium. J Therm Anal Calorim. 2013;113(3):1415–20.CrossRefGoogle Scholar
  22. 22.
    Vazquez C, Lago N, Mato MM, Casas LM, Esarte L, Legido JL, et al. Microcalorimetric performance of the growth in culture of Escherichia coli, Proteus mirabilis and their mixtures in different proportions. J Therm Anal Calorim. 2014;116(1):107–12.CrossRefGoogle Scholar
  23. 23.
    Wang F, Yao J, Yu C, Chen H, Yi Z. Investigating Pseudomonas putida–Candida humicola interactions as affected by chelate fe(III) in soil. Bull Environ Contam Toxicol. 2014;92(3):358–63.CrossRefGoogle Scholar
  24. 24.
    Vazquez C, Lago N, Mato MM, Legido JL, Esarte L. Microcalorimetric study of the growth of Enterococcus faecalis, Pseudomonas aeruginosa and their mixtures in an enriched culture medium. J Therm Anal Calorim. 2015;121(1):463–8.CrossRefGoogle Scholar
  25. 25.
    Vazquez C, Lago N, Mato MM, Esarte L, Legido JL. Study of the growth of Enterococcus faecalis, Escherichia coli and their mixtures by microcalorimetry. J Therm Anal Calorim. 2016;125:739–44.CrossRefGoogle Scholar
  26. 26.
    Esarte L, Lago N, Vazquez C, Mato MM, Legido JL. Microcalorimetric method to determine ceftazidime and piperacillin–tazobactam susceptibility in Pseudomonas aeruginosa. J Therm Anal Calorim. 2015;121:353–60.CrossRefGoogle Scholar
  27. 27.
    Vazquez C, Iglesias TP, Mourelle L, Gomez CP, Lago N, Mato MM, Legido JL. Ultrasonic bacterial treatment of mineral waters: a study on S. epidermidis, S. warneri, P. aeruginosa and P. mirabilis. Environ Earth Sci. 2015;73:2863–8.CrossRefGoogle Scholar
  28. 28.
    Paz Andrade MI. Les Dévelopements Récents de la Microcalorimétrie et de la Thermogenese. 1st ed. Paris: CRNS; 1967.Google Scholar
  29. 29.
    Hunter R, Beveridge T. Application of a pH-Sensitive Fluoroprobe (C-SNARF-4) for pH Microenvironment Analysis in Pseudomonas aeruginosa. Biofilms Appl Environ Microbiol. 2005;71(5):2501–10.  https://doi.org/10.1128/AEM.71.5.2501-2510.2005.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Applied PhysicsUniversity of VigoVigoSpain
  2. 2.Pharmacy ServiceAlvaro Cunqueiro HospitalVigoSpain

Personalised recommendations