Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 1183–1188 | Cite as

Experimental measurement and prediction by the UNIFAC and the DISQUAC models of the solid–liquid equilibrium diagrams of piperidine + benzene and piperidine + n-octane systems

  • Hocine Sifaoui
  • Fadhila Rabhi
  • Driss Dafri
  • Ahmed Ait-Kaci
  • Marek Rogalski
Article

Abstract

This work is a continuation of our researches on the study of thermodynamic properties of organic compound mixtures and made up of two sections: an experimental section and a theoretical section. The experimental solid–liquid equilibrium diagrams of binary systems: piperidine + benzene and piperidine + n-octane, measured at atmospheric pressure, have been obtained by means of an apparatus derived from that of Smit. The advantage of this apparatus compared to that of Rossini and that of Jacob is the higher measurement accuracy and the low amount of product used. In the theoretical section, in addition to the calculation of the liquidus curves in the ideal case, the DISQUAC model and the Dortmund-UNIFAC method were applied to the two mixtures to predict the liquidus curves and make a comparison.

Keywords

Solid–liquid equilibrium diagrams Piperidine DISQUAC UNIFAC 

References

  1. 1.
    Sifaoui H, Rogalski M. Solid–liquid equilibria of three binary systems of anthracene with 2-phenylimidazole, 4,5-diphenylimidazole and 2,4,5-triphenylimidazole. Thermochim Acta. 2012;543:32–6.CrossRefGoogle Scholar
  2. 2.
    Sifaoui H, Ait-Kaci A, Modarressi A, Rogalski M. Solid–liquid equilibria of three binary systems: {1-ethyl-3-methylimidazolium exafluorophosphate + 2-phenylimidazole, or 4,5-diphenylimidazole or 2,4,5-triphenylimidazole}. Thermochim Acta. 2007;456:114–9.CrossRefGoogle Scholar
  3. 3.
    Sifaoui H, Ait-Kaci A, Rogalski M. Determination mixing heats of ternary systems of piperidine and hydrocarbons at 303.15 K. J Therm Anal Calorim. 2003;73:219–32.CrossRefGoogle Scholar
  4. 4.
    Sifaoui H, Ait-Kaci A, Benmakhlouf H. Heats of mixtures at 303.15 K of ternary systems: piperidine(1) + benzene (2) + cyclohexane (3) and piperidine (1) + benzene (2) + n-octane (3). J Therm Anal Calorim. 2000;60:427–36.CrossRefGoogle Scholar
  5. 5.
    Smit WM. Melting curves (temperature-heat content curves) as criteria for purity. Recl Trav Chim Pays-Bas. 1956;75:1309–20.CrossRefGoogle Scholar
  6. 6.
    Michou-Saucet MA, Jose J, Riollot LM. Description of a thermal analysis apparatus and application to the study of two binary diagrams: hexamethylphosphorotriamide-benzene and hexamethylphosphorotriamide-cyclohexane. Thermochim Acta. 1983;68:207–21.CrossRefGoogle Scholar
  7. 7.
    TRC, Thermodynamic Tables-Hydrocarbons, Thermodynamics research center, The Texas A&M University System: College Station, Texas, USA. 1977;A1010–A1011.Google Scholar
  8. 8.
    Mair BJ, Glasgow R, Rossini FD. Determination of the freezing points and amounts of impurity in hydrocarbons from freezing and melting curves. J Res Natl Bur Stand. 1941;26:591–620.CrossRefGoogle Scholar
  9. 9.
    Glasgow AR, Streiff AJ, Rossini FD. Determination of the purity of hydrocarbons by measurement of freezing points. J Res Natl Bur Stand. 1945;35:355–73.CrossRefGoogle Scholar
  10. 10.
    Kehiaian HV. Thermodynamics of binary liquid organic mixtures. Pure Appl Chem. 1985;57:15–30.CrossRefGoogle Scholar
  11. 11.
    Kehiaian HV. Group contribution methods for liquid mixtures: a critical review. Fluid Phase Equilib. 1983;13:243–52.CrossRefGoogle Scholar
  12. 12.
    Kehiaian HV, Grolier JPE, Benson GC. Thermodynamics of organic mixtures. A generalized quasichemical theory in terms of group surface interactions. J Chim Phys. 1978;75:1031–48.CrossRefGoogle Scholar
  13. 13.
    Gmehling J, Li J, Schiller M. A modified UNIFAC model. 2. present parameter matrix and results for different thermodynamic properties. Ind Eng Chem Res. 1993;32:178–93.CrossRefGoogle Scholar
  14. 14.
    Ait-Kaci A. State doctoral thesis. CBU Lyon I; 1982.Google Scholar
  15. 15.
    Tiné MR, Kehiaian HV. A comparative study of thermodynamic properties of n-alkane or cycloalkane mixtures with aliphatic, linear or heterocyclic, molecules containing the same functional groups. Fluid Phase Equilib. 1987;32:211–48.CrossRefGoogle Scholar
  16. 16.
    Gonzalez JA, Alonso I, Alonso-Tristan C, La De, Fuente IG, Cobos JC. Thermodynamics of mixtures containing amines. XI. Liquid + liquid equilibria and molar excess enthalpies at 298.15 K for N-methylaniline + hydrocarbon systems. Characterization in terms of DISQUAC and ERAS models. J Chem Thermodyn. 2013;56:89–98.CrossRefGoogle Scholar
  17. 17.
    Gmehling J, Lohmann J, Jakob A, Li J, Joh R. A modified UNIFAC (Dortmund) model. 3. revision and extension. Ind Eng Chem Res. 1998;37:4876–82.CrossRefGoogle Scholar
  18. 18.
    Lide DR. Handbook of chemistry and physics. Florida: CRC Press; 2003.Google Scholar
  19. 19.
    Bondi AA. Physical proprieties of molecular crystals, liquids and glasses. New York: Wiley; 1968.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Laboratoire de Physico-chimie des Matériaux et Catalyse (LPCMC), Département de Chimie, Faculté des Sciences ExactesUniversité A. Mira de BejaiaBejaiaAlgérie
  2. 2.Laboratoire de chimie et physique – approche multi-échelle des milieux complexes, LCP-AMEMC, EA 4164Université de LorraineMetz Cedex 3France
  3. 3.Laboratoire de Thermodynamique et de Modélisation Moléculaire, Faculté de ChimieUniversité des Sciences et de Technologie Houari Boumediene (USTHB)Bab-Ezzouar, AlgerAlgérie

Personalised recommendations