Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 1367–1387 | Cite as

A multi-technique nondestructive approach for characterizing the state of conservation of ancient bookbindings

  • Stefano Sfarra
  • Mauro Regi
  • Mariagrazia Tortora
  • Cinzia Casieri
  • Stefano Perilli
  • Domenica Paoletti
Article
  • 78 Downloads

Abstract

The aim of this work is to evaluate the potentiality of a multi-technique nondestructive approach for characterizing the state of conservation of precious bookbindings. In particular, the bookbinding of an ancient book dating back nineteenth century was inspected by infrared thermography, near-infrared reflectography and transmittography, digital speckle photography, holographic interferometry, and proton magnetic resonance relaxometry. Data were processed by different and innovative methodologies, among which, a calibration procedure of the camera for correlation analyses based on specklegrams. The results were compared, showing a promising synergy for the diagnostic purposes, on the basis of the relationship between structure, properties, and uses of the analyzed materials.

Keywords

Bookbinding Infrared vision Speckle Holographic interferometry Nuclear magnetic resonance relaxometry Defect Heat transfer 

Notes

Acknowledgements

The authors would like to thank Prof. Lilliana Genova (an English-speaking teacher) for the correction of the inauthentic expressions and semantic errors present into the first draft of the paper. A special thank also to Mr. Angelo Colagrande (University of L’Aquila, Italy), for the technical support during the holographic measurements.

References

  1. 1.
    Salerno E, Martinelli F, Tonazzini A. Nonlinear model identification and see-through cancelation from recto-verso documents. Int J Doc Anal Recognit. 2013;16:177–87.CrossRefGoogle Scholar
  2. 2.
    Salerno E, Tonazzini A, Bedini L. Digital image analysis to enhance underwritten text in the Archimedes palimpsest. J Doc Anal Recognit. 2007;9:79–87.CrossRefGoogle Scholar
  3. 3.
    Scheper K. The technique of Islamic bookbinding—methods, materials and regional varieties. Boston: Brill; 2015.Google Scholar
  4. 4.
    Chance F. The preservation of bookbindings. Notes Queries. 1886;49(s7-II):444.Google Scholar
  5. 5.
    Haines BM. The conservation of leather bookbindings. Stud Conserv. 1984;29:50–4.CrossRefGoogle Scholar
  6. 6.
    Gross MR. Topics in library technology: binding techniques. Bull Med Libr Assoc. 1966;54(22):23–5.Google Scholar
  7. 7.
    Belaya IK. Softening and restoration of parchment in manuscripts and bookbindings. Restaurator. 1970;1(1):20–48.Google Scholar
  8. 8.
    Friedlander GD. Automation comes to the printing and publishing industry—production and distribution of magazines, periodicals, and books. IEEE Spectr. 1968;5(5):53–62.CrossRefGoogle Scholar
  9. 9.
    Ershad-Langroudi A, Mirmontahai A. Thermal analysis on historical leather bookbinding treated with PEG and hydroxyapatite nanoparticles. J Therm Anal Calorim. 2015;120(2):1119–27.CrossRefGoogle Scholar
  10. 10.
    Pasanec Preprotic S, Jurecic D, Babic D, Lajic B. Important factors of paperback books quality of adhesion strength in adhesive binding. In: Annals of DAAAM and proceedings of the international DAAAM symposium, intelligent manufacturing and automation: focus on interdisciplinary solutions, pp. 953–954, Zadar (Croatia), 2010.Google Scholar
  11. 11.
    Strzelczyk AB, Kuroczkin J, Krumbein WE. Studies on the microbial degradation of ancient leather bookbindings: part I. Int Biodeterior. 1987;23(1):3–27.CrossRefGoogle Scholar
  12. 12.
    Stadler P. Defects in bookbinding and processing of printed products. Adhasion Munchen. 1988;32(7–8):1–6.Google Scholar
  13. 13.
    Moẑina K, Černič M, Demŝar M. Non-destructive methods for chemical, optical, colorimetric and typographic characterisation of a reprint. J Cult Herit. 2007;8(4):339–49.CrossRefGoogle Scholar
  14. 14.
    Badea E, Miu L, Budrugeac P, Giurginca M, Maŝić A, Badea N, Della Gatta G. Study of deterioration of historical parchments by various thermal analysis techniques complemented by SEM, FTIR, UV-Vis-NIR and unilateral NMR investigations. J Therm Anal Calorim. 2008;91(1):17–27.CrossRefGoogle Scholar
  15. 15.
    Richardin P, Cuisance F, Buisson N, Asensi-Amoros V, Lavier C. AMS radiocarbon dating and scientific examination of high historical value manuscripts: application to two Chinese manuscripts from Dunhuang. J Cult Herit. 2010;11(4):398–403.CrossRefGoogle Scholar
  16. 16.
    Kraková L, Chovanovà K, Selim SA, Ŝimonovičová A, Puškarová A, Maková A, Pangallo D. A multiphasic approach for investigation of the microbial diversity and its biodegradative abilities in historical paper and parchment documents. Int Biodeterior Biodegrad. 2012;70:117–25.CrossRefGoogle Scholar
  17. 17.
    Maralha VSF, Burgio L, Clark RJH. Raman spectroscopy analysis of pigments on 16-17th c. Persian manuscripts. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;92:21–8.CrossRefGoogle Scholar
  18. 18.
    Pruneanu M, Bucişcanu I, Ardelean E, Melniciuc-Puicâ N. The influence of oligomeric melanine resin on bookbinding resistance to environmental factors. Eur J Sci Theol. 2012;8(4):225–32.Google Scholar
  19. 19.
    Moẑina K, Moẑina K, Bračko S. Non-invasive methods for characterization of printed cultural heritage. J Cult Herit. 2013;14(1):8–15.CrossRefGoogle Scholar
  20. 20.
    Bicchieri M, Monti M, Piantanida G, Sodo A. Non-destructive spectroscopic investigation on historic Yemenite scriptorial fragments: evidence of different degradation and recipes for iron tannic inks. Anal Bioanal Chem. 2013;405(8):2713–21.CrossRefGoogle Scholar
  21. 21.
    Johnson A. Evaluation of the use of SC6000 in conjunction with Klucel G as a conservation treatment for bookbinding leather: notes on a preliminary study. J Inst Conserv. 2013;36(2):125–44.CrossRefGoogle Scholar
  22. 22.
    Ershad-Langroudi A, Mirmontahai A. Hydroxyapatite nanoparticles and polyethylene glycol treatment of historical leather: mechanical properties. J Am Leather Chem Assoc. 2013;108(12):449–56.Google Scholar
  23. 23.
    Mercuri F, Gnoli R, Paoloni S, Orazi N, Zammit U, Cicero C, Marinelli M, Scudieri F. Hidden text detection by infrared thermography. Restaurator. 2013;34(3):195–211.Google Scholar
  24. 24.
    Budrugeac P, Cucos A, Miu L. Use of thermal analysis methods to assess the damage in the bookbindings of some religious books from XVIII century, stored in Romanian libraries. J Therm Anal Calorim. 2014;116(1):141–9.CrossRefGoogle Scholar
  25. 25.
    Carşote C, Budrugeac P, Decheva R, Haralampiev NS, Miu L, Badea E. Characterization of a byzantine manuscript by infrared spectroscopy and thermal analysis. Rev Roum Chim. 2014;59(6–7):429–36.Google Scholar
  26. 26.
    Vornicu N, Deselnicu V, Bibire C, Ivanov D, Doroftei F. Analytical techniques used for the characterization and authentication of six ancient religious manuscripts (XVIII-XIX centuries). Microsc Res Tech. 2015;78(1):70–84.CrossRefGoogle Scholar
  27. 27.
    Parodi LE, Verri G. Infrared Reflectography of the Mughal painting Princes of the House of Timur. J Islamic Manuscr. 2016;7(1):36–65.CrossRefGoogle Scholar
  28. 28.
    Barrett T, Ormsby M, Lang JB. Non-destructive analysis of 14th–19th century European handmade papers. Restaurator. 2016;37(2):93–135.Google Scholar
  29. 29.
    Petushkova YP, Nikolaev GM. Nuclear magnetic resonance study of parchment and leather. Restaurator. 1983;5(3–4):242–8.Google Scholar
  30. 30.
    Bendada A, Sfarra S, Ibarra-Castanedo C, Akhloufi M, Caumes J-P, Pradere C, Batsale J-C, Maldague X. Subsurface imaging for panel paintings inspection: a comparative study of the ultraviolet, the visible, the infrared and the terahertz spectra. Opto-Electron Rev. 2015;23(1):88–99.CrossRefGoogle Scholar
  31. 31.
    Mercuri F, Zammit U, Orazi N, Paoloni S, Marinelli M, Scudieri F. Active infrared thermography applied to the investigation of art and historic artefacts. J Therm Anal Calorim. 2011;104(2):475–85.CrossRefGoogle Scholar
  32. 32.
    Marinelli M, Mercuri F, Scudieri F, Zammit U, Colombo G. Thermographic study of microstructural defects in deteriorated parchment sheets. J Phys IV. 2005;125:527–9.Google Scholar
  33. 33.
    Yamauchi T, Okumura S, Noguchi M. Application of thermography to the deforming process of paper materials. J Mater Sci. 1993;28(17):4549–52.CrossRefGoogle Scholar
  34. 34.
    Sfarra S, Cheilakou E, Theodorakeas P, Paoletti D, Koui MSS. Annunziata Church (L’Aquila, Italy) unveiled by -non and micro-destructive testing techniques. Appl Phys A Mater Sci Process. 2017;123(3):1–12.CrossRefGoogle Scholar
  35. 35.
    Maldague XPV. Theory and practice of infrared thermography for nondestructive testing. 1st ed. New York: Wiley; 2001.Google Scholar
  36. 36.
    Georges MP, Vandenrijt J-F, Thizy C, Alexeenko I, Pedrini G, Vollheim B, Lopez I, Jorge I, Rochet J, Osten W. Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths. Opt Express. 2014;22(21):25517–29.CrossRefGoogle Scholar
  37. 37.
    Sfarra S, Ibarra-Castanedo C, Ambrosini D, Paoletti D, Bendada A, Maldague X. Non-destructive testing techniques to help the restoration of frescoes. Arab J Sci Eng. 2014;39:3461–80.CrossRefGoogle Scholar
  38. 38.
    Ibarra-Castanedo C, Sfarra S, Ambrosini D, Paoletti D, Bendada A, Maldague X. Panel paintings diagnostics using holographic interferometry and pulsed thermography. QIRT J. 2010;7(1):85–114.CrossRefGoogle Scholar
  39. 39.
    Theodorakeas P, Ibarra-Castanedo C, Sfarra S, Avdelidis NP, Koui M, Maldague X, Paoletti D, Ambrosini D. NDT inspection of plastered mosaics by means of transient thermography and holographic interferometry. NDT&E Int. 2012;47:150–6.CrossRefGoogle Scholar
  40. 40.
    Sfarra S, Theodorakeas P, Avdelidis NP, Koui M. Thermographic, ultrasonic and optical methods: a new dimension in veneered wood diagnostics. Russ J Nondestruct Test. 2013;49(4):234–50.CrossRefGoogle Scholar
  41. 41.
    Sfarra S, Ibarra-Castanedo C, Ambrosini D, Paoletti D, Bendada A, Maldague X. Discovering the defects in paintings using non-destructive testing (NDT) techniques and passing through measurements of deformation. J Nondestruct Eval. 2014;33:358–83.CrossRefGoogle Scholar
  42. 42.
    Ambrosini D, Paoletti A, Paoletti D, Sfarra S. NDT methods in art work corrosion monitoring. In: Proceedings of SPIE 6618, O3A: optics for arts, architecture, and archaeology, Fotakis C, Pezzati D, Salimbeni R, (Eds.) Munich (Germany), 2007.Google Scholar
  43. 43.
    Sfarra S, Ibarra-Castanedo C, Ridolfi S, Cerichelli G, Ambrosini D, Paoletti D, Maldague X. Holographic interferometry (HI), infrared vision and X-ray fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach. Appl Phys A. 2014;115:1041–56.CrossRefGoogle Scholar
  44. 44.
    Tortora M, Sfarra S, Chiarini M, Daniele V, Taglieri G, Cerichelli G. Non-destructive and micro-invasive testing techniques for characterizing materials, structures and restoration problems in mural paintings. Appl Surf Sci. 2016;387:971–85.CrossRefGoogle Scholar
  45. 45.
    Aksogan O, Resatoglu R, Binici H. An environment friendly new insulation material involving waste newsprint papers reinforced by cane stalks. J Build Eng. 2018;15:33–40.CrossRefGoogle Scholar
  46. 46.
    Perilli S, Regi M, Sfarra S, Nardi I. Comparative analysis of heat transfer for an advanced composite material used as insulation in the building field by means of Comsol Multiphysics® and Matlab® computer programs. Rom J Mater. 2016;46(2):185–95.Google Scholar
  47. 47.
    Maldague X, Marinetti S. Pulse phase infrared thermography. J Appl Phys. 1996;79(5):2694–8.CrossRefGoogle Scholar
  48. 48.
    Ibarra-Castanedo C, Piau J-M, Guibert S, Maldague XP, Bendada A. Chapter 14: active infrared thermography techniques for the nondestructive testing of materials. In: Chen CH, editor. Ultrasonic and advanced methods for nondestructive testing and material characterization. WSPC: Singapore; 2007. p. 325–48.CrossRefGoogle Scholar
  49. 49.
    Vavilov VP, Shiryaev VV, Khorev VS. Processing of active thermal nondestructive testing results by the method of wavelet analysis. Russ J Nondestruct Test. 2011;47(4):276–83.CrossRefGoogle Scholar
  50. 50.
    Madruga FJ, Ibarra-Castanedo C, Conde OM, López-Higuera JM, Maldague X. Infrared thermography processing based on higher-order statistics. NDT&E Int. 2010;43(8):661–6.CrossRefGoogle Scholar
  51. 51.
    Torrence C, Compo GP. A practical guide to wavelet analysis. Bull Am Meteor Soc. 1998;79:61–78.CrossRefGoogle Scholar
  52. 52.
    Torrence C, Webster P. Interdecal changes in the ENSO-Moonson system. J Clim. 1999;12:2679–90.CrossRefGoogle Scholar
  53. 53.
    Darlington RB. Is kurtosis really peakedness? Am Stat. 1970;24(2):19–20.Google Scholar
  54. 54.
    Wang H, Kang Y, Fu D, Zhang Z. Application of digital speckle correlation method to measure fracture toughness of foil material. In: Proceedings of SPIE 5058, optical technology and image processing for fluids and solids diagnostics, Shen GX, Cha SS, Chiang F-P, Mercer CR (Eds), Beijing (China), 2002.Google Scholar
  55. 55.
    Sveen JK. 2006. In: MatPIV—the PIV toolbox for Matlab. http://folk.uio.no/jks/matpiv/index2.html. Accessed 17 Mar 2006.
  56. 56.
    Bendada A, Sfarra S, Genest M, Paoletti D, Rott S, Talmy E, Ibarra-Castanedo C, Maldague X. How to reveal subsurface defects in Kevlar composite materials after an impact loading ? Eng Fract Mech. 2013;108:195–208.CrossRefGoogle Scholar
  57. 57.
    Van Nieuwenhove V, De Beenhouwer J, De Carlo F, Mancini L, Marone F, Sijbers J. Dynamic intensity normalization using eigen flat fields in X-ray imaging. Opt Express. 2015;23(21):27975–89.CrossRefGoogle Scholar
  58. 58.
    Olsen E, Dou C, Zhang X, Hu L, Kim H, Hildum E. Radiometric calibration for AgCam. Remote Sens. 2010;2(2):464–77.CrossRefGoogle Scholar
  59. 59.
    Pratt WK. Digital image processing. N.Y.: John Wiley & Sons; 1991.Google Scholar
  60. 60.
    Ibarra-Castanedo C, Bendada A, Maldague X. In: Thermographic image processing for NDT. 2006. http://www.ndt.net/article/panndt2007/papers/55.pdf. Accessed 11 Mar 2006.
  61. 61.
    Mehta PC, Rampal VV. Lasers and holography. New York: World Scientific Publishing Co., Pte. Ltd.; 1993.CrossRefGoogle Scholar
  62. 62.
    Sfarra S, Theodorakeas P, Ibarra-Castanedo C, Avdelidis NP, Paoletti A, Paoletti D, Hrissagis K, Bendada A, Koui M, Maldague X. Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques. Insight. 2012;54(1):21–7.CrossRefGoogle Scholar
  63. 63.
    van Asperen de Boer JRJ. Infrared reflectograms of panel paintings. Stud Conserv. 1966;11:45–6.CrossRefGoogle Scholar
  64. 64.
    Sfarra S, Ibarra-Castanedo C, Santulli C, Sarasini F, Ambrosini D, Paoletti D, Maldague X. Eco-friendly laminates: from the indentation to non-destructive evaluation by optical and infrared monitoring techniques. Strain. 2013;49:175–89.CrossRefGoogle Scholar
  65. 65.
    Casieri C, Senni L, Romagnoli M, Santamaria U, De Luca F. Determination of moisture fraction in wood by mobile NMR device. J Magn Reson. 2004;171:364–72.CrossRefGoogle Scholar
  66. 66.
    Blümich B, Perlo J, Casanova F. Mobile single-sided NMR. Prog Nucl Mag Res Sp. 2008;52(4):197–269.CrossRefGoogle Scholar
  67. 67.
    Capitani D, Proietti N, Ziarelli F, Segre AL. NMR study of water-filled pores in one of the most widely used polymeric material: the paper. Macromolecules. 2002;35(14):5536–43.CrossRefGoogle Scholar
  68. 68.
    Hürlimann MD, Venkataramanan L. Quantitative measurement of two-dimensional distribution functions of diffusion and relaxation in grossly inhomogeneous fields. J Magn Reson. 2002;157(1):31–42.CrossRefGoogle Scholar
  69. 69.
    Zauner G, Mayr G, Hendorfer G. Wavelet-based subsurface defect characterization in pulsed phase thermography for non-destructive evaluation. In: Proceedings of SPIE 7248, wavelet applications in industrial processing VI, Truchetet F, Laligant O, (Eds.) San Jose (USA), 2009.Google Scholar
  70. 70.
    Maldague X, Krapez JC, Poussart D. Thermographic nondestructive evaluation (NDE): an algorithm for automatic for automatic defect extraction in infrared images. IEEE Trans Syst Man Cybern. 1990;20(3):722–5.CrossRefGoogle Scholar
  71. 71.
    Bow ST. Pattern recognition. New York: Marcel Dekker; 1984.Google Scholar
  72. 72.
    Mao Z, Strickland N. Image sequence processing for target estimation in forward-looking imagery. Opt Eng. 1988;27:541–9.CrossRefGoogle Scholar
  73. 73.
    Bell ZW. Evaluation of threshold heuristics useful for automated filmless radiography. In: Thompson DO, Chimenti DE, editors. Review of progress in quantitative nondestructive evaluation. New York: Plenum; 1986. p. 739–46.Google Scholar
  74. 74.
    Yao Y, Sfarra S, Ibarra-Castanedo C, You R, Maldague XPV. The multi-dimensional ensemble empirical mode decomposition (MEEMD) an advanced tool for thermographic diagnosis of mosaics. J Therm Anal Calorim. 2017;128(3):1841–58.CrossRefGoogle Scholar
  75. 75.
    Aparicio JHV, Arroyo LO, Ponce de Leòn HRM, Ortega Herrera JÁ, Rodriguez Arias YA, González SA, Rodríguez-Romo S, Castanõ VM. Implementation of the boundary element method for detecting defects by transient thermography on an aluminum plate. J Therm Anal Calorim. 2016;126(2):671–9.CrossRefGoogle Scholar
  76. 76.
    Weir CE. Effect of temperature on the volume of leather and collagen in water. J Res Natl Bur Stand. 1948;41(4):279–85.CrossRefGoogle Scholar
  77. 77.
    Sfarra S, Ibarra-Castanedo C, Santulli C, Paoletti D, Maldague X. Monitoring of jute/hemp fiber hybrid laminates by nondestructive testing techniques. Sci Eng Compos Mater. 2016;23(3):283–300.Google Scholar
  78. 78.
    Sfarra S, Regi M, Santulli C, Sarasini F, Tirillò J, Perilli S. An innovative nondestructive perspective for the prediction of the effect of environmental aging on impacted composite materials. Int J Eng Sci. 2016;102:55–76.CrossRefGoogle Scholar
  79. 79.
    Banister M. The craft of bookbinding. New York: Dover Publications Inc.; 1975.Google Scholar
  80. 80.
    Bendix C. Damaged books. London: The Preservation Advisory Centre; 2010.Google Scholar
  81. 81.
    Madruga F, Ibarra-Castanedo C, Conde OM, Maldague XP, López-Higuera JM. Enhanced contrast detection of subsurface defects by pulsed infrared thermography based on the fourth order statistic moment, kurtosis. In: Proceedings of SPIE 7299, Thermosense XXXI, Burleigh D.D. and Dinwiddie R.B., Eds., Baltimore (USA), 2009.Google Scholar
  82. 82.
    Sfarra S, Ibarra-Castanedo C, Ambrosini D, Paoletti D, Bendada A, Maldague X. Ceramics and defects. Integrated approach between pulsed thermography, near-infrared reflectography and sandwich holography for wooden panel paintings advanced monitoring. Russ J Nondestruct Test. 2011;47(4):284–93.CrossRefGoogle Scholar
  83. 83.
    Sfarra S, Perilli S, Paoletti D, Ambrosini D. Ceramics and defects. Infrared thermography and numerical simulations—a wide-ranging view for quantitative analysis. J Therm Anal Calorim. 2016;123:43–62.CrossRefGoogle Scholar
  84. 84.
    Ibarra-Castanedo C, González D, Klein M, Pilla M, Vallerand S, Maldague X. Infrared image processing and data analysis. Infrared Phys Technol. 2004;46(1–2):75–83.CrossRefGoogle Scholar
  85. 85.
    Zhang H, Fernandes H, Djupkep Dizeu FB, Hassler U, Fleuret J, Genest M, Ibarra-Castanedo C, Robitaille F, Joncas S, Maldague X. Pulsed micro-laser line thermography on submillimeter porosity in carbon fiber reinforced polymer composites: experimental and numerical analyses for the capability of detection. Appl Opt. 2016;55(34):D1–10.CrossRefGoogle Scholar
  86. 86.
    Zhang H, Fernandes HC, Hassler U, Ibarra-Castanedo C, Genest M, Robitaille F, Joncas S, Maldague X. Comparative study of microlaser excitation thermography and microultrasonic excitation thermography on submillimeter porosity in carbon fiber reinforced polymer composites. Opt Eng. 2016;56(4):041304.CrossRefGoogle Scholar
  87. 87.
    Peeters J, Ibarra-Castanedo C, Khodayar F, Mokhtari Y, Sfarra S, Zhang H, Maldague X, Dirckx JJJ, Steenackers G. Optimised dynamic line scan thermographic detection of CFRP inserts using FE updating and POD analysis. NDT&E Int. 2018;93:141–9.CrossRefGoogle Scholar
  88. 88.
    Sfarra S, Theodorakeas P, Cernecky J, Pivarciova E, Perilli S, Koui M. Inspecting marquetries at different wavelengths: the preliminary numerical approach as aid for a wide-range of non-destructive tests. J Nondestruct Eval. 2017;36:1–20.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Stefano Sfarra
    • 1
    • 2
  • Mauro Regi
    • 3
  • Mariagrazia Tortora
    • 3
  • Cinzia Casieri
    • 3
  • Stefano Perilli
    • 1
  • Domenica Paoletti
    • 1
  1. 1.Department of Industrial and Information Engineering and Economics (DIIIE)University of L’AquilaMonteluco di Roio – L’Aquila (AQ)Italy
  2. 2.Tomsk Polytechnic UniversityTomskRussia
  3. 3.Department of Physical and Chemical Sciences (DSFC)University of L’AquilaCoppito – L’Aquila (AQ)Italy

Personalised recommendations