Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 1333–1345 | Cite as

Co-firing of blends of sugarcane bagasse and coal

Thermal and kinetic behaviors
  • Daniela A. Mortari
  • Lilian D. M. Torquato
  • Marisa S. Crespi
  • Paula M. Crnkovic
Article
  • 45 Downloads

Abstract

The interaction effects between sugarcane bagasse and a Brazilian coal during co-firing were investigated by means of thermal decomposition behavior, comparison between theoretical and experimental results, activation energy, and ignition temperature. The blends were prepared in the ratios of 100:0; 75:25; 50:50; 25:75; 0:100 (bagasse/coal). The interaction effect evaluated in this study was related to the interference of the bagasse volatile matter content in the coal thermal decomposition. The thermal decomposition behavior analyses were performed in a thermogravimetric balance, and the apparent activation energy was determined by two different models—model-free and local linear integral isoconversional method—under two different heating rate ranges. The results showed that the high volatile content of the sugarcane bagasse leads to more intense combustion, lower ignition temperature, and more complex reaction mechanism, as compared to coal. When the fuels are blended, there is a temperature anticipation of the events related to the decomposition of the coal portion in the mixture, the reaction rates increase and the ash formation is affected. The kinetic data also suggested that the interaction between both materials may occur and improve the burnout of the blend in relation to the pure coal firing due to the contribution of sugarcane bagasse volatile matter. Nevertheless, the presence of the bagasse did not allow to lower activation energy during the blends devolatilization process.

Keywords

Co-firing Sugarcane bagasse Coal Thermal decomposition Activation energy Ignition temperature 

Notes

Acknowledgements

The authors would like to acknowledge FAPESP Research Foundation of São Paulo State (Project 2011/00183-2) and Coordenacão de Aperfeiçoamento de Pessoal de Nıvel Superior (CAPES), for the financial support provided to this research.

References

  1. 1.
    Kazanç F, Khatami R, Crnkovic PM, Levendis Y. Emissions of NOx from coals of various ranks, bagasse, and coal-bagasse blends burning in O2/N2 and O2/CO2 environments. Energy Fuel. 2011;25(7):2850–61.CrossRefGoogle Scholar
  2. 2.
    Gao C, Vejahaty F, Katalambula H, Gupta R. Co-gasification of biomass with coal and oil sand coke in a drop tube furnace. Energy Fuel. 2010;24:232–40.CrossRefGoogle Scholar
  3. 3.
    Rasul MG, Rudolph V. Fluidized bed combustion of Australian bagasse. Fuel. 2000;79:123–30.CrossRefGoogle Scholar
  4. 4.
    Woytiuk K, Sanscartier D, Amichev BY, Campbell W, Rees KV. Modeling and analysis: life-cycle assessment of torrefied coppice willow co-firing with lignite coal in an existing pulverized coal boiler. Biofuels Bioprod Bioref. 2017;11(5):830–46.CrossRefGoogle Scholar
  5. 5.
    FAO—Food and Agriculture Organization of the United Nations. http://www.fao.org/docrep/003/w3647e/w3647e03.htm. Accessed 5 May 2016.
  6. 6.
    Unica—Brazilian Sugarcane Industry Association: http://www.unicadata.com.br/listagem.php?idMn=88. Accessed 5 May 2016.
  7. 7.
  8. 8.
    Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol. 2009;100:1413–8.CrossRefGoogle Scholar
  9. 9.
    Shen DK, Gu S, Luo KH, Bridgwater AV, Fang MX. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel. 2009;88:1024–39.CrossRefGoogle Scholar
  10. 10.
    Torquato LM, Braz CEM, Ribeiro CA, Capela JMV, Crespi MS. Kinetic study of the co-firing of bagasse-sludge blends. J Therm Anal Calorim. 2015;21:499–507.CrossRefGoogle Scholar
  11. 11.
    Al-Qayim K, Nimmo W, Hughes K, Pourkashanian M. Kinetic parameters of the intrinsic reactivity of woody biomass and coal chars via thermogravimetric analysis. Fuel. 2017;210:811–25.CrossRefGoogle Scholar
  12. 12.
    Yuzbasi NS, Seçuk N. Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR. Fuel Process Technol. 2011;92:1101–8.CrossRefGoogle Scholar
  13. 13.
    Mureddu M, Dessì F, Orsini A, Ferrara F, Pettinau A. Air- and oxygen-blown characterization of coal and biomass by thermogravimetric analysis. Fuel. 2018;212:626–37.CrossRefGoogle Scholar
  14. 14.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  15. 15.
    El-Sayed SA, Mostafa ME. Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques. Waste Biomass Valor. 2015;6:401–15.CrossRefGoogle Scholar
  16. 16.
    Alwani MS, Abdul Khalil HPS, Sulaiman O, Islam MN, Dungani R. An approach to using agricultural waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. BioResources. 2014;9(1):218–30.Google Scholar
  17. 17.
    Fermoso J, Gil M, Pevida C, Pis J, Rubiera F. Kinetic models comparison for non-isothermal steam gasification of coal–biomass blend chars. Chem Eng J. 2010;161:276–84.CrossRefGoogle Scholar
  18. 18.
    Edreis EMA, Luo G, Li A, Chao C, Hua H, Zhang S, Gui B, Xiao L, Xua K, Zhang P, Yao H. CO2 co-gasification of lower sulphur petroleum coke and sugar cane bagasse via TG–FTIR analysis technique. Bioresour Technol. 2013;136:595–603.CrossRefGoogle Scholar
  19. 19.
    Bragato M, Joshi K, Carlson JB, Tenório JAS, Levendis YA. Combustion of coal, bagasse and blends thereof part II: speciation of PAH emissions. Fuel. 2012;96:51–8.CrossRefGoogle Scholar
  20. 20.
    Krerkkaiwan S, Fushimi C, Yamamoto H, Tsutsumi A, Kuchonthara P. Influences of heating rate during coal char preparation and AAEMs on volatile–char interaction with different sources of biomass volatile. Fuel Process Technol. 2014;119:10–8.CrossRefGoogle Scholar
  21. 21.
    Kastanaki E, Vamvuka D. A comparative reactivity and kinetic study on the combustion of coal-biomass char blends. Fuel. 2006;85:1186–93.CrossRefGoogle Scholar
  22. 22.
    Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol. 2010;101:4584–92.CrossRefGoogle Scholar
  23. 23.
    Sahu SG, Chakraborty N, Sarkar P. Coal biomass co-combustion: an overview. Renew Sust Energy Rev. 2014;39:575–86.CrossRefGoogle Scholar
  24. 24.
    Demirbas A. Sustainable cofiring of biomass with coal. Energy Convers Manage. 2003;44:1465–79.CrossRefGoogle Scholar
  25. 25.
    Ávila I, Crnkovic PM, Luna CMR, Milioli FE. Use of a fluidized bed combustor and thermogravimetric analyzer for the study of coal ignition temperature. Appl Therm Eng. 2017;114:984–92.CrossRefGoogle Scholar
  26. 26.
    Tognotti L, Malotti A, Petarca L, Zanelli S. Measurement of ignition temperature of coal particles using a thermogravimetric technique. Combust Sci Technol. 1985;44:15–28.CrossRefGoogle Scholar
  27. 27.
    Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340:53–68.CrossRefGoogle Scholar
  28. 28.
    Wanjun T, Donghua C. An integral method to determine variation in activation energy with extent of conversion. Thermochim Acta. 2005;433(1–2):72–6.CrossRefGoogle Scholar
  29. 29.
    Da Silva DR, Crespi MS, Ribeiro CA, Capela JMV. Thermal decomposition kinetics of sugarcane mills wastes. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6270-z.Google Scholar
  30. 30.
    Yurdakul S. Determination of co-combustion properties and thermal kinetics of poultry litter/coal blends using thermogravimetry. Renew Energy. 2016;89:215–23.CrossRefGoogle Scholar
  31. 31.
    Quensanga A, Picard C. Thermal degradation of sugar cane bagasse. Thermochim Acta. 1988;125:87–9.Google Scholar
  32. 32.
    Aiman S, Stubington JF. The pyrolysis kinetics of bagasse at low heating rates. Biomass Bioenergy. 1993;5(2):113–20.CrossRefGoogle Scholar
  33. 33.
    Byrne CE, Nagle DC. Carbonization of wood for advanced materials applications. Carbon. 1996;35(2):259–66.CrossRefGoogle Scholar
  34. 34.
    Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicelluloses, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.CrossRefGoogle Scholar
  35. 35.
    Guimarães JI, Frollini E, Silva CG, Wypych F, Satyanarayana KG. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind Crop Prod. 2009;30:407–15.CrossRefGoogle Scholar
  36. 36.
    Avila T, Wu E, Lester E. Estimating the spontaneous combustion potential of coals using thermogravimetric analysis. Energy Fuel. 2014;28:1765–73.CrossRefGoogle Scholar
  37. 37.
    Li B, Chen G, Zhang H, Sheng CD. Development of non-isothermal TGA–DSC for kinetics analysis of low temperature coal oxidation prior to ignition. Fuel. 2014;118:385–91.CrossRefGoogle Scholar
  38. 38.
    Yuanyuan Z, Yanxia G, Fangqin C, Kezhou Y, Yan C. Investigation of combustion characteristics and kinetics of coal gangue with different feedstock properties by thermogravimetric analysis. Thermochim Acta. 2015;614:137–48.CrossRefGoogle Scholar
  39. 39.
    Fang X, Jia L, Yin IA. Weighted average global process model based on two-stage kinetic scheme for biomass combustion. Biomass Bioenergy. 2013;48:43–5.CrossRefGoogle Scholar
  40. 40.
    Da Silva DR, Crespi MS, Crnkovic PCGM, Ribeiro CA. Pyrolysis, combustion and oxy-combustion studies of sugarcane industry wastes and its blends. J Therm Anal Calorim. 2015;121(1):309–18.CrossRefGoogle Scholar
  41. 41.
    Nimmo W, Daood SS, Gibbs BM. The effect of O2 enrichment on NOx formation in biomass co-fired pulverized coal combustion. Fuel. 2010;89(10):2945–52.CrossRefGoogle Scholar
  42. 42.
    Buratti C, Barbanera M, Bartocci P, Fantozzi F. Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion. Bioresour Technol. 2015;186:154–62.CrossRefGoogle Scholar
  43. 43.
    Motaunga TE, Anandjiwala RD. Effect of alkali and acid treatment on thermal degradation kinetics of sugar cane bagasse. Ind Crop Prod. 2015;74:472–7.CrossRefGoogle Scholar
  44. 44.
    Brown ME, Gallagher PK. Handbook of thermal analysis and calorimetry, recent advances, techniques and applications, vol. 5. Amsterdam: Elsevier; 2008.Google Scholar
  45. 45.
    Faúndez J, Arias B, Rubiera F, Arenillas A, García X, Gordon AL, Pis JJ. Ignition characteristics of coal blends in an entrained flow furnace. Fuel. 2007;86:2076–80.CrossRefGoogle Scholar
  46. 46.
    Riaza J, Álvarez L, Gil MV, Pevida C, Pis JJ, Rubiera F. Ignition and NO emissions of coal and biomass blends under different oxy-fuel atmospheres. Energy Proced. 2013;37:1405–12.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Daniela A. Mortari
    • 1
  • Lilian D. M. Torquato
    • 2
  • Marisa S. Crespi
    • 2
  • Paula M. Crnkovic
    • 1
  1. 1.School of Engineering of São CarlosUniversity of São Paulo (USP)São CarlosBrazil
  2. 2.Department of Analytical Chemistry, Institute of Chemistry of AraraquaraUNESP – São Paulo State UniversityAraraquaraBrazil

Personalised recommendations