Skip to main content
Log in

Analysis of the thermal hazards of 1-butyl-3-methylimidazolium chloride mixtures with cellulose and various metals

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) are a relatively new class of environmentally benign and comparatively safe solvents and are expected to have numerous applications in chemical processes. Although pure ILs are thermally stable, the presence of impurities can affect their thermal stability and decomposition behavior. In addition, ILs decomposition products include flammable gases that may present a fire hazard. When designing safer processes and operating conditions, it is therefore important to investigate IL thermal properties and decomposition products in combination with additives. The present work focused on cellulose dissolution which is promising application of ILs to obtain better understanding of thermal hazards. Mixtures of cellulose, iron (III) oxide (Fe2O3), copper(II) oxide (CuO), chromium, and nickel with 1-butyl-3-methylimidazolium chloride (BmimCl) were examined, using differential scanning calorimetry, high-sensitivity calorimetry, and thermogravimetry–differential thermal analysis–mass spectrometry. The addition of CuO was found to generate an exothermic reaction below the decomposition temperature of BmimCl and also to lower the decomposition temperature. BmimCl/CuO mixtures also produced extremely flammable gases below the decomposition temperature of pure BmimCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhimin X, Yuwei Z, Xiao-qin Z, Yuanyuan C, Tiancheng M. Thermal stabilities and decomposition mechanism of amino- and hydroxyl-functionalized ionic liquids. Thermochim Acta. 2014;578:59–67.

    Article  CAS  Google Scholar 

  2. Martyn JE, Kenneth RS. Ionic liquids. Green solvents for the future. Pure Appl Chem. 2000;72:1391–8.

    Article  Google Scholar 

  3. Ngoc LM, Kihun A, Yoon-Mo K. Methods for recovery of ionic liquids—a review. Process Biochem. 2014;49:872–81.

    Article  CAS  Google Scholar 

  4. Pengfei Z, Yutong G, Yiqi L, Yan G, Yong W, Cong W. Ionic liquids with metal chelate anions. Chem Commun. 2012;48:2334–6.

    Article  CAS  Google Scholar 

  5. John SW. A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem. 2002;4:73–80.

    Article  CAS  Google Scholar 

  6. Fabio B, Cinzia C. The heck reaction in ionic liquids: progress and challenges. Molecules. 2010;15:2211–45.

    Article  CAS  Google Scholar 

  7. Christian PM. Supported ionic liquid catalysis. Chem Eur. 2005;11:50–6.

    Article  CAS  Google Scholar 

  8. Roberto IC, Joan FB. Comparison of Ionic liquids to conventional organic solvents for extraction of aromatics from aliphatics. J Chem Eng Data. 2016;61:1685–99.

    Article  CAS  Google Scholar 

  9. Samir IAE. Ionic liquids recycling and reuse. In: Scott TH, editor. Ionic liquids—classes and properties. London: Intech; 2011. p. 239–72.

    Google Scholar 

  10. Barbara R, Martin S, Andrea B, Martin W, Wolfgang K. Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid. Eur Polym J. 2008;44:2986–90.

    Article  CAS  Google Scholar 

  11. Zhe W, Steen MR, Bradley DG, Timothy AG. Safety concerns in a pharmaceutical manufacturing process using dimethyl sulfoxide (DMSO) as a solvent. Org Process Res Dev. 2012;16:1994–2000.

    Article  CAS  Google Scholar 

  12. Francis S. Atsumi Miyake translator. Thermal safety of chemical process: risk assessment and process design. Tokyo: Maruzen; 2011.

    Google Scholar 

  13. Horng-Jang L, Shih-Kai H, Hao-Ying C, Sheng-Nan L. 2012 International symposium on safety science and technology reason for ionic liquids to be combustible. Procedia Engineering, vol. 45; 2012. p. 502–6.

  14. Marek K, Jan G, Jarl BR. Thermal stability of low temperature ionic liquids revisited. Thermochim Acta. 2004;412:47–53.

    Article  CAS  Google Scholar 

  15. Helen LN, Karen L, Liesl H, Alan BM. Thermal properties of imidazolium ionic liquids. Thermochim Acta. 2000;357–8:97–102.

    Google Scholar 

  16. Douglas MF, Jeffrey WG, Hugh CDL, Paul CT. TGA decomposition kinetics of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate and the thermal effects of contaminants. J Chem Thermodyn. 2005;37:900–5.

    Article  CAS  Google Scholar 

  17. Walid HA, Jeffrey W, Marc N, Richard HH, Thomas E, John C, Paul CT, Hugh CD, Douglas MF. Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochim Acta. 2004;409:3–11.

    Article  CAS  Google Scholar 

  18. Douglas MF, Walid HA, Jeffrey WG, Paul HM, Hugh CDL, Paul CT. Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts. Green Chem. 2003;5:724–7.

    Article  CAS  Google Scholar 

  19. Qiwei Y, Kun Y, Huabin X, Baogen S, Zongbi B, Yiwen Y, Qilong R. The effect of molecular solvents on the viscosity, conductivity and ionicity of mixtures containing chloride anion-based ionic liquid. J Ind Eng Chem. 2013;19:1708–14.

    Article  CAS  Google Scholar 

  20. Frank W, Loredana NT, Frank M. Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta. 2012;528:76–84.

    Article  CAS  Google Scholar 

  21. Yujin C, Rubing Z, Tao C, Jing G, Mo X, Huizhou L. Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives. Appl Microbiol Biotechnol. 2017;101:521–32.

    Article  CAS  Google Scholar 

  22. Martin G, Pedro F, Thomas H. Ionic liquids—promising but challenging solvents for homogeneous derivatization of cellulose. Molecular. 2012;17:7458–502.

    Article  CAS  Google Scholar 

  23. Richard PS, Scott KS, John DH, Robin DR. Dissolution of cellulose with ionic liquids. J Am Chem Soc. 2002;124:4974–5.

    Article  CAS  Google Scholar 

  24. Hyungsup K, Yongjun A, Seung Y. Comparing the influence of acetate and chloride anions on the structure of ionic liquid pretreated lignocellulosic biomass. Biomass Bioenergy. 2016;93:234–53.

    Google Scholar 

  25. Yan C, Jin W, Jun Z, Huiquan L, Yi Z, Jiasong H. Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J. 2009;147:13–21.

    Article  CAS  Google Scholar 

  26. Samira VF, Yong-Wah K, Constance AS. A coupled low temperature oxidative and ionic liquid pretreatment of lignocellulosic biomass. Catal Today. 2016;269:2–8.

    Article  CAS  Google Scholar 

  27. Yamamoto Y, Miyake A. Influence of a mixed solvent containing ionic liquids on the thermal hazard of the cellulose dissolution process. J Therm Anal Calorim. 2017;127:743–8.

    Article  CAS  Google Scholar 

  28. Chieu DT, Silvia L, Daniel O. Absorption of water by room-temperature ionic liquids: effect of anions on concentration and state of water. Appl Spectrosc. 2003;57:152–7.

    Article  Google Scholar 

  29. Anastasia E, Grit H, Peer S. Thermal stability and crystallization behavior of imidazolium halide ionic liquids. Thermochim Acta. 2013;573:162–9.

    Article  CAS  Google Scholar 

  30. United Nations. Globally harmonized system of classification and labeling of chemicals (GHS) fourth revised edition. 2011. https://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev04/English/ST-SG-AC10-30-Rev4e.pdf. Accessed 25 June 2017.

  31. Maaike CK, Wim B, Cor JP, Geert-Jan W. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochim Acta. 2007;465:40–7.

    Article  CAS  Google Scholar 

  32. Arindrajit C, Stefan TT. Confined rapid thermolysis/FTIR/ToF studies of imidazolium-based ionic liquids. Thermochim Acta. 2006;443:159–72.

    Article  CAS  Google Scholar 

  33. Yan H, Jing P, Shaowen H, Jiuqiang L, Maolin Z. Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA–MS analysis and DFT calculations. Thermochim Acta. 2010;501:78–83.

    Article  CAS  Google Scholar 

  34. NIST Mass Spec Data Center. Mass Spectra in NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Eds. https://doi.org/10.18434/t4d303. Accessed 21 July 2017.

  35. Siedlecka EM, Czerwicka M, Neumann J, Stepnowski P, Fernández JF, Thöming J. Ionic liquids: methods of degradation and recovery. In: Ionic liquids: theory, properties, new approaches. 2011. http://www.intechopen.com/books/ionic-liquids-theory-properties-new-approaches/ionic-liquids-methods-of-degradation-and-recovery. Accessed 18 July 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsumi Miyake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaki, N., Shiota, K., Izato, Yi. et al. Analysis of the thermal hazards of 1-butyl-3-methylimidazolium chloride mixtures with cellulose and various metals. J Therm Anal Calorim 133, 797–803 (2018). https://doi.org/10.1007/s10973-018-6993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-6993-5

Keywords

Navigation