Skip to main content
Log in

The effect of ultrasound-assisted vacuum drying on the drying rate and quality of red peppers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ultrasound-assisted vacuum (USV) drying is a promising method to increase heat and mass transfer rate. This study aimed to examine effects of USV drying on the drying rate and some quality parameters of red peppers at 45, 55, 65, and 75 °C. The results were compared with USV control drying (vacuum drying without ultrasound treatment) and the other drying methods. The USV drying shortened the drying period to 25% and increased the effective moisture diffusivity (Deff) to 89% when compared by USV control drying. The dehydration kinetics of the red peppers were successfully described using seven thin layer drying models for all of the dehydration methods, and the logarithmic model had the best fit for the USV drying, with highest R2 and lowest RMSE values. The total yeast and mold counts were significantly reduced following the USV drying in comparison with the USV control drying. This study suggested that USV drying could be used effectively in drying of red pepper with high drying rate and no significant bioactive compound degradation compared to USV control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

D eff :

Effective moisture diffusivity/m2 s−1

R 2 :

Correlation coefficient

RMSE:

Root-mean-square error

MR:

Moisture ratio/dry basis

X t :

Moisture content at t/kg-water kg-dry matter−1

X e :

Moisture content at equilibrium (kg-water kg-dry matter−1)

X 0 :

Moisture content at initial/kg-water kg-dry matter−1

χ 2 :

Chi-square

L :

The thickness of red pepper samples/m

D 0 :

The pre-exponential constant/m2 s−1

E a :

The activation energy/kJ mol−1

R :

Ideal gas constant/8.314 J mol−1 K−1

T :

Drying temperature/K

DR:

Drying rate/kg-water h−1m−2

t:

Drying time/h

h:

Hours

X :

Moisture content/kg-water kg-dry matter−1

L s :

Dry matter of the peppers/kg

S :

Total surface area of all red peppers in one container/m2

RR :

The rehydration ratio

ΔE* :

The total color differences

ΔL* :

Lightness difference/L *sample  − L *standard

Δa* :

Red/green difference/a *sample  − a *standard

Δb* :

Yellow/blue difference/b *sample  − b *standard

C* :

The chroma

GAE:

Gallic acid equivalents/mg g-dry matter−1

0:

Initial

e:

Equilibrium

eff:

Effective

References

  1. Duke JA. Handbook of medicinal herbs. 3rd ed. Boca Raton: CRC Press; 1986.

    Google Scholar 

  2. Arikan BC. The investigation of the acute effects of hot pepper (Capsicum annuum L.) on serum leptin and serum nitric oxide levels. M.Sc. Thesis. University of Kahramanmaras Sutcu Imam, Institute of Natural and Applied Sciences. Turkey: Kahramanmaras; 2004.

  3. Kocayigit F. Investigation of drying characteristics of some vegetables. M.Sc. Thesis, T.C. Yildiz Technical University, Institute of Science and Technology, Department of Chemical Engineering, Turkey: Istanbul; 2010.

  4. Reis FR. Vacuum drying for extending food shelf-life. Berlin: Springer; 2014.

    Google Scholar 

  5. Arevalo-Pinedo A, Murr FEX. Kinetics of vacuum drying of pumpkin (Cucurbita maxima): modeling with shrinkage. J Food Eng. 2006;76:562–7.

    Article  Google Scholar 

  6. Wu L, Orikasa T, Ogawa Y, Tagawa A. Vacuum drying characteristics of eggplants. J Food Eng. 2007;83:422–9.

    Article  Google Scholar 

  7. Chemat F, Chemat MKK. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem. 2011;18:813–35.

    Article  CAS  Google Scholar 

  8. Ercan SŞ, Soysal Ç. Use of ultrasound in food preservation. Nat Sci. 2013;5:5–13.

    Google Scholar 

  9. Garcia-Noguera J, Oliveira FIP, Gallão MI, Weller CL, Rodrigues S, Fernandes FAN. Ultrasound-assisted osmotic dehydration of strawberries: effect of pretreatment time and ultrasonic frequency. Dry Technol. 2010;28:294–303.

    Article  Google Scholar 

  10. Sabarez HT, Gallego-Juarez JA, Riera E. Ultrasonic-assisted convective drying of apple slices. Dry Technol Int J. 2012;30(9):989–97.

    Article  Google Scholar 

  11. He Z, Yang F, Peng Y, Yi S. Ultrasound assisted vacuum drying of wood: effects on drying time and product quality. BioResources. 2013;8(1):855–63.

    Article  CAS  Google Scholar 

  12. Baslar M, Kilicli M, Toker O, Sagdic O, Arici M. Ultrasonic vacuum drying technique as a novel process for shortening the drying period for beef and chicken meats. Innov Food Sci Emerg Technol. 2014;26:182–90.

    Article  Google Scholar 

  13. Baslar M, Kilicli M, Yalinkilic B. Dehydration kinetics of salmon and trout fillets using ultrasonic vacuum drying as a novel technique. Ultrason Sonochem. 2015;27:495–502.

    Article  CAS  Google Scholar 

  14. Tekin ZH, Baslar M, Karasu S, Kilicli M. Dehydration of green beans using ultrasound-assisted vacuum drying as a novel technique: drying kinetics and quality parameters. J Food Process Preserv. 2017. https://doi.org/10.1111/jfpp.13227.

    Google Scholar 

  15. He Z, Zhao Z, Yang F, Yi S. Effect of ultrasound pretreatment on wood prior to vacuum drying. Maderas-Ciencia y tecnología. 2014;16(4):395–402.

    Google Scholar 

  16. Kingsly ARP, Singh DB. Drying kinetics of pomegranate arils. J Food Eng. 2007;79:741–4.

    Article  Google Scholar 

  17. Doymaz I. Experimental study on drying of pear slices in a convective dryer. Int J Food Sci Technol. 2013;48:1909–15.

    Article  CAS  Google Scholar 

  18. Crank J. The mathematical of diffusion. 2nd ed. London: Oxford University Press; 1975.

    Google Scholar 

  19. Geankoplis CJ. Transport processes and unit operations. 3rd ed. Upper Saddle River: Prentice-Hall International; 1993.

    Google Scholar 

  20. Cemeroglu B. Food analyses. 2nd ed. Ankara: Food Technology Association Publication; 2011.

    Google Scholar 

  21. Sahin S, Sumnu SG. Electromagnetic properties. In: Heldman DR, editor. Physical properties of foods. San Marcos: AVI Pub. Co; 2006. p. 167–71.

    Google Scholar 

  22. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult. 1965;16:144–58.

    CAS  Google Scholar 

  23. Ozturk I, Karaman S, Baslar M, Cam M, Caliskan O, Sagdic O, Yalcin H. Aroma, sugar and anthocyanin profile of fruit and seed of mahlab (Prunus mahaleb L.): optimization of bioactive compounds extraction by simplex lattice mixture design. Food Anal Methods. 2014;7(4):761–73.

    Article  Google Scholar 

  24. Singh RP, Murthy KNC, Jayaprakasha GK. Studies on the antioxidant activity of pomegranate (punica granatum) peel and seed extracts using in vitro models. J Agric Food Chem. 2002;50:81–6.

    Article  CAS  Google Scholar 

  25. AOAC, VA: Association of official analytical chemists, 15th ed., Arlington. Reference to a chapter in an edited book: Official Methods of Analysis; 1990.

  26. Nasiroglu S. The use of infrared drying technology in the drying of red peppers, apples and gypsum. M.S. Thesis. T.C. Canakkale Onsekiz Mart University. Institute of Science and Technology. Department of Agricultural Machinery. Turkey: Canakkale; 2007.

  27. Doymaz I, Pala M. Hot-air drying characteristics of red pepper. J Food Eng. 2002;55:331–5.

    Article  Google Scholar 

  28. Akpinar EK. Energy and exergy analyses of drying of red pepper slices in a convective type dryer. Int Commun Heat Mass Transf. 2004;1(8):1165–76.

    Article  Google Scholar 

  29. Akpinar EK, Bicer Y, Yildiz C. Thin layer drying of red pepper. J Food Eng. 2003;59:99–104.

    Article  Google Scholar 

  30. Mulet A, Berna A, Borras M, Pinaga F. Effect of air flow rate on carrot drying. Dry Technol. 1987;5:245–58.

    Article  Google Scholar 

  31. Labuza TP, Simon IB. Surface tension effects during drying. Air drying of apple slices. Food Technol. 1970;24:712–5.

    Google Scholar 

  32. Schossler K, Jager H, Knorr D. Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innov Food Sci Emerg Technol. 2012;16:113–20.

    Article  Google Scholar 

  33. Doymaz I. Thin-layer drying behaviour of mint leaves. J Food Eng. 2006;74(3):370–5.

    Article  Google Scholar 

  34. Huang YW, Chen MQ. Thin-layer isothermal drying kinetics of municipal sewage sludge based on two falling rate stages during hot-air-forced convection. J Therm Anal Calorim. 2017;129:567–75.

    Article  CAS  Google Scholar 

  35. Kaymak-Ertekin F. Drying and rehydrating kinetics of green and red peppers. J Food Sci. 2002;67(1):168–75.

    Article  CAS  Google Scholar 

  36. Gupta P, Ahmed J, Shivhare US, Raghavan GSV. Drying characteristics of red chilli. Dry Technol. 2002;20:1975–87.

    Article  Google Scholar 

  37. Kaleemullah S, Kailappan R. Modelling of thin-layer drying kinetics of red chillies. J Food Eng. 2006;76:531–7.

    Article  Google Scholar 

  38. Panagiotou NM, Krokida MK, Maroulis ZB, Saravacos GD. Moisture diffusivity: literature data compilation for foodstuffs. Int J Food Prop. 2004;7(2):273–99.

    Article  Google Scholar 

  39. Zogzas NP, Maroulis ZB, Marinos-Kouris D. Moisture diffusivity data compilation in foodstuffs. Dry Technol. 1996;14:2225–53.

    Article  CAS  Google Scholar 

  40. Wang CY, Singh RP. A single layer drying equation for rough rice. Washington: ASAE; 1978.

    Google Scholar 

  41. Page G. Factors influencing the maximum rates of air-drying shelled corn in thin layer. M.S. Thesis. Purdue University West Lafayette. Indiana: USA; 1949.

  42. Yaldız O, Ertekin C. Thin layer solar drying of some vegetables. Dry Technol. 2001;19(3):83–97.

    Google Scholar 

  43. Sunil V, Sharma N. Experimental investigation of the performance of an indirect mode natural convection solar dryer for drying fenugreek leaves. J Therm Anal Calorim. 2014;118:523–31.

    Article  CAS  Google Scholar 

  44. De la Fuente-Blanco S, Riera-Franco de Sarabia E, Acosta-Aparicio VM, Blanco-Blanco A, Gallego-Juárez JA. Food drying process by power ultrasound. Ultrasonics. 2006;44(s1):523–7.

    Article  Google Scholar 

  45. Ozgur M, Ozcan T, Akpinar-Bayizit A, Yilmaz-Ersan L. Functional compounds and antioxidant properties of dried green and red peppers. Afr J Agric Res. 2011;6(25):5638–44.

    Article  Google Scholar 

  46. Vega-Gálvez A, Scala KD, Rodriguez K, Lemus-Mondaca R, Miranda M, López J, Perez-Won M. Effect of air drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. Var. Hungarian). Food Chem. 2009;117:647–53.

    Article  Google Scholar 

  47. Kim S, Lee KW, Park J, Lee HJ, Hwang IK. Effect of drying in antioxidant activity and changes of ascorbic acid and color by different drying and storage in Korean red pepper (Capsicum annuum, L.). Int J Food Sci Technol. 2006;41:90–5.

    Article  CAS  Google Scholar 

  48. Tannenbaum SR, Young VR. Vitamins and minerals. In: Fennema OR, editor. Food chemistry. New York: Elsevier; 1985. p. 488–93.

    Google Scholar 

  49. Miranda M, Maureira H, Rodriguez K, Vega-Gálvez A. Influence of temperature on the drying kinetics, physicochemical properties, and antioxidant capacity of aloe vera (Aloe Barbadensis Miller) gel. J Food Eng. 2009;91(2):297–304.

    Article  CAS  Google Scholar 

  50. Ramesh MN, Wolf W, Tevini D, Jung G. Influence of processing parameters on the drying of spice paprika. J Food Eng. 2001;49:63–72.

    Article  Google Scholar 

  51. Abid M, Jabbar S, Wu T, Hashim MM, Hu B, Lei S, Zhang X, Zeng X. Effect of ultrasound on different quality parameters of apple juice. Ultrason Sonochem. 2013;20:1182–7.

    Article  CAS  Google Scholar 

  52. Baslar M, Ertugay MF. The effect of ultrasound and photosonication treatment on polyphenoloxidase (PPO) activity, total phenolic component and color of apple juice. Int J Food Sci Technol. 2013;48:886–92.

    Article  CAS  Google Scholar 

  53. Lewis WK. The rate of drying of solid materials”. Ind Eng Chem. 1921;13:427–32.

    Article  CAS  Google Scholar 

  54. Henderson SM, Pabis S. Grain drying theory. I. Temperature effect on drying coefficient. J Agric Engrg Res. 1961;6:169–74.

    Google Scholar 

  55. Henderson SM. Progress in developing the thin layer drying equation. Trans ASAE. 1974;17:1167–72.

    Article  Google Scholar 

  56. Wang CY, Singh RP. A single layer drying equation for rough rice. ASAE. 1978;78:3001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynep Hazal Tekin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekin, Z.H., Baslar, M. The effect of ultrasound-assisted vacuum drying on the drying rate and quality of red peppers. J Therm Anal Calorim 132, 1131–1143 (2018). https://doi.org/10.1007/s10973-018-6991-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-6991-7

Keywords

Navigation