Skip to main content
Log in

Analysis of thermal properties and heat transfer mechanisms for polyurethane foams blown with water

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Rigid polyurethane foam (PUF) is one of the outstanding insulation materials and has been widely used in freezers and cryogenic facilities. Among the various blowing agents used in the manufacturing PUF, water-blown PUF is attracting much attention as environmentally friendly PUF as prominent replacements for the environmentally hazardous CFCs and HCFCs due to their significant ozone depletion potential. We investigated the effective thermal conductivity of PUF blown with different amounts of water, on the basis of the heat transfer mechanisms in terms of thermal conduction of solids and gases and the thermal conductivity of radiation in the cells. A predictive model for the effective thermal conductivity of PUFs with different densities is presented. The predictive model was validated by comparing the predicted values with the experimentally measured ones. The result showed that the effective thermal conductivity increased from 0.023 to 0.027 W m−1 K−1 as the PUF density increased from 48 to 120 kg m−3: increased by 158% from 0.0034 to 0.0089 W m−1 K−1 for the thermal conductivity of solid PUF and decreased by 50% from 0.0037 to 0.0018 for the thermal conductivity of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

d :

Mean cell diameter (m)

e :

Spectral blackbody emissive power (W m−2 µm−1)

f s :

Fraction of solid in the struts

k foam :

Solid polymer thermal conductivity (W m−1 K−1)

L :

Thickness of the sample (m)

n :

Refractive index of the porous media

λ eff :

Effective thermal conductivity (W m−1 K−1)

λ g :

Conductivity of the blowing gas (W m−1 K−1)

λ r :

Thermal conductivity of radiation in the cell (W m−1 K−1)

λ s :

Thermal conductivity in solid polyurethane foam (W m−1 K−1)

S v :

Surface area to volume ratio of the cell

t cw :

Cell wall thickness (m)

T :

Mean foam temperature (K)

T :

Spectral transmittance

δ :

Void fraction in polyurethane foam

σ :

Stefan–Boltzmann constant

β :

Total extinction coefficient

ρ f :

Density of the PUF

ρ s :

Density of the solid polymer

β s :

Extinction coefficient of a single polymer cell wall

σ :

Spectral extinction coefficient

φ :

Constant refractivity

References

  1. Seo WJ, Park JH, Sung YT, Hwang DH, Kim WN, Lee HS. Properties of water-blown rigid polyurethane foams with reactivity of raw materials. J Appl Polym Sci. 2004;93(5):2334–42.

    Article  CAS  Google Scholar 

  2. Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP. Effect of foam density on the properties of water blown rigid polyurethane foam. J Appl Polym Sci. 2008;108(3):1810–7.

    Article  CAS  Google Scholar 

  3. Klempner D, Frisch KC. Handbook of polymeric foams and foam technology, vol. 404. Munich: Hanser; 1991.

    Google Scholar 

  4. Yu-Hallada LC, Reichel CJ. Zero-ODP rigid insulation foams prepared with HFAs. J Cell Plast. 1995;31(2):190–7.

    Article  Google Scholar 

  5. Kim YH, Choi SJ, Kim JM, Han MS, Kim WN, Bang KT. Effects of organoclay on the thermal insulating properties of rigid polyurethane poams blown by environmentally friendly blowing agents. Macromol Res. 2007;15(7):676–81.

    Article  CAS  Google Scholar 

  6. Zatorski W, Brzozowski ZK, Kolbrecki A. New developments in chemical modification of fire-safe rigid polyurethane foams. Polym Degrad Stab. 2008;93(11):2071–6.

    Article  CAS  Google Scholar 

  7. Li X, Cao H, Zhang Y. Properties of water blown rigid polyurethane foams with different functionality. J Wuhan Univ Technol Mater Sci Ed. 2008;23(1):125–9.

    Article  CAS  Google Scholar 

  8. Lerch B. Metering of flammable blowing agents. J Cell Plast. 1991;27(1):26.

    Article  Google Scholar 

  9. Kim BK, Seo JW, Jeong HM. Properties of waterborne polyurethane/nanosilica composite. Macromol Res. 2003;11(3):198–201.

    Article  CAS  Google Scholar 

  10. Yang KS, Guo X, Meng W, Hyun JY, Kang IK, Kim YI. Behavior of hepatocytes inoculated in gelatin-immobilized polyurethane foam. Macromol Res. 2003;11(6):488–94.

    Article  CAS  Google Scholar 

  11. Yun JK, Yoo HJ, Kim HD. Preparation and properties of waterborne polyurethane-urea/poly (vinyl alcohol) blends for high water vapor permeable coating materials. Macromol Res. 2007;15(1):22–30.

    Article  CAS  Google Scholar 

  12. Jung HC, Ryu SC, Kim WN, Lee YB, Choe KH, Kim SB. Properties of rigid polyurethane foams blown by HCFC 141B and distilled water. J Appl Polym Sci. 2001;81(2):486–93.

    Article  CAS  Google Scholar 

  13. Niyogi D, Kumar R, Gandhi KS. Water blown free rise polyurethane foams. Polym Eng Sci. 1999;39(1):199–209.

    Article  CAS  Google Scholar 

  14. Seo D, Youn JR. Numerical analysis on reaction injection molding of polyurethane foam by using a finite volume method. Polymer. 2005;46(17):6482–93.

    Article  CAS  Google Scholar 

  15. Kim HS, Lim H, Chul Song J, Kyu Kim B. Effect of blowing agent type in rigid polyurethane foam. J Macromol Sci Pure. 2008;45(4):323–7.

    Article  CAS  Google Scholar 

  16. Ciecierska E, Jurczyk-Kowalska M, Bazarnik P, Kowalski M, Krauze S, Lewandowska M. The influence of carbon fillers on the thermal properties of polyurethane foam. J Therm Anal Calorim. 2016;123(1):283–91.

    Article  CAS  Google Scholar 

  17. Park SB, Choi SW, Kim JH, Bang CS, Lee JM. Effect of the blowing agent on the low-temperature mechanical properties of CO2- and HFC-245fa-blown glass-fiber-reinforced polyurethane foams. Compos Part B Eng. 2016;93:317–27.

    Article  CAS  Google Scholar 

  18. Modarresifar F, Bingham PA, Jubb GA. Thermal conductivity of refractory glass fibres. J Therm Anal Calorim. 2016;125(1):35–44.

    Article  CAS  Google Scholar 

  19. Choi SW, Roh JU, Kim MS, Lee WI. Analysis of two main LNG CCS (cargo containment system) insulation boxes for leakage safety using experimentally defined thermal properties. Appl Ocean Res. 2012;37:72–89.

    Article  Google Scholar 

  20. Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. New York: Wiley; 2007.

    Google Scholar 

  21. Lim H, Kim EY, Kim BK. Polyurethane foams blown with various types of environmentally friendly blowing agents. Plast, Rubber Compos. 2010;39(8):364–9.

    Article  CAS  Google Scholar 

  22. Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge: Cambridge University Press; 1999.

    Google Scholar 

  23. Schuetz MA, Glicksman LR. A basic study of heat transfer through foam insulation. J Cell Plast. 1984;20(2):114–21.

    Article  CAS  Google Scholar 

  24. Poling BE, Prausnitz JM, O’connell JP. The properties of gases and liquids, vol. 5. New York: Mcgraw-Hill; 2001.

    Google Scholar 

  25. Moreno JD. Radiative transfer and thermal performance levels in foam insulation boardstocks. PhD Thesis. Massachusetts Institute of Technology; 1991.

  26. Howell JR, Menguc MP, Siegel R. Thermal radiation heat transfer. Boca Raton: CRC Press; 2010.

    Google Scholar 

  27. Mozgowiec MD. The use of small cells to reduce radiation heat transfer in foam Insulation. PhD Thesis. Massachusetts Institute of Technology; 1990.

  28. Tseng CJ. Thermal radiative properties of phenolic foam insulation. J Quant Spectrosc. 2002;72(4):349–59.

    Article  CAS  Google Scholar 

  29. Wu JW, Sung WF, Chu HS. Thermal conductivity of polyurethane foams. Int J Heat Mass Trans. 1999;42(12):2211–7.

    Article  CAS  Google Scholar 

  30. Hilyard NC, Cunningham A. Low density cellular plastics: physical basis of behavior. Sheffield: Springer; 2012.

    Google Scholar 

  31. Schindler A, Neumann G, Stobitzer D, Vidi S. Accuracy of a guarded hot plate (GHP) in the temperature range between −160°C and 700°C. High Temp High Press. 2016;45(2):81–96.

    Google Scholar 

  32. Wood G. The ICI polyurethane handbook, 2nd ed. New York: Wiely; 1990.

    Google Scholar 

  33. Oertel G. Polyurethane handbook. New York: Hanser; 1993.

    Google Scholar 

  34. Niyogi D, Kumar R, Gandhi KS. Modeling of bubble-size distribution in free rise polyurethane foams. AIChE J. 1992;38(8):1170–84.

    Article  CAS  Google Scholar 

  35. Niyogi D, Kumar R, Gandhi KS. Water blown free rise polyurethane foams. Polym Eng Sci. 1999;39(1):199–209.

    Article  CAS  Google Scholar 

  36. Navickas J, Madsen RA. Aging characteristics of polyurethane foam insulation. In: Advances in cryogenic engineering. Springer; 1977, p. 233–41.

  37. Schuetz MA. Heat transfer in foam insulation. PhD Thesis. Massachusetts Institute of Technology; 1983.

  38. Boetes R. Heat transfer reduction in closed cell polyurethane foams. PhD Thesis. Technische Universiteit Delft; 1986.

  39. Norton FJ. Diffusion of chlorofluorocarbon gases in polymer films and foams. J Cell Plast. 1982;18(5):300–15.

    Article  CAS  Google Scholar 

  40. Sinofsky M. Property measurement and thermal performance prediction of foam insulations. PhD Thesis. Massachusetts Institute of Technology; 1984.

  41. Jarfelt U, Ramnäs O. Thermal conductivity of polyurethane foam-best performance. In: 10th International symposium on district heating and cooling. Chalmers University of Technology Goteborg: Sweden; 2006, p. 3–5.

  42. Park DH, Park GP, Kim SH, Kim WN. Effects of isocyanate index and environmentally-friendly blowing agents on the morphological, mechanical, and thermal insulating properties of polyisocyanurate-polyurethane foams. Macromol Res. 2013;21(8):852–9.

    Article  CAS  Google Scholar 

  43. Tseng CJ, Yamaguchi M, Ohmori T. Thermal conductivity of polyurethane foams from room temperature to 20 K. Cryogenics. 1997;37(6):305–12.

    Article  CAS  Google Scholar 

  44. Semsarzadeh MA, Navarchian AH. Effects of NCO/OH ratio and catalyst concentration on structure, thermal stability, and crosslink density of poly (urethane-isocyanurate). J Appl Polym Sci. 2003;90(4):963–72.

    Article  CAS  Google Scholar 

  45. Bilbao R, Mastral JF, Ceamanos J, Aldea ME. Kinetics of the thermal decomposition of polyurethane foams in nitrogen and air atmospheres. J Anal Appl Pyrol. 1996;37(1):69–82.

    Article  CAS  Google Scholar 

  46. Dick C, Dominguez-Rosado E, Eling B, Liggat JJ, Lindsay CI, Martin SC, Mohammed MH, Seeley G, Snape CE. The flammability of urethane-modified polyisocyanurates and its relationship to thermal degradation chemistry. Polymer. 2001;42(3):913–23.

    Article  CAS  Google Scholar 

  47. Chang TC, Shen WS, Chiu YS, Ho SY. Thermo-oxidative degradation of phosphorus-containing polyurethane. Polym Degrad Stab. 1995;49(3):353–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author, Dr. Choi, thanks the Civil-military technology cooperation program funded by the ministry of Trade, Industry & Energy and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2015R1A2A2A01006203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Il Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S.W., Jung, J.M., Yoo, H.M. et al. Analysis of thermal properties and heat transfer mechanisms for polyurethane foams blown with water. J Therm Anal Calorim 132, 1253–1262 (2018). https://doi.org/10.1007/s10973-018-6990-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-6990-8

Keywords

Navigation