Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 1253–1262 | Cite as

Analysis of thermal properties and heat transfer mechanisms for polyurethane foams blown with water

  • Sung Woong Choi
  • Jae Min Jung
  • Hyeong Min Yoo
  • Sung Ha Kim
  • Woo Il Lee


Rigid polyurethane foam (PUF) is one of the outstanding insulation materials and has been widely used in freezers and cryogenic facilities. Among the various blowing agents used in the manufacturing PUF, water-blown PUF is attracting much attention as environmentally friendly PUF as prominent replacements for the environmentally hazardous CFCs and HCFCs due to their significant ozone depletion potential. We investigated the effective thermal conductivity of PUF blown with different amounts of water, on the basis of the heat transfer mechanisms in terms of thermal conduction of solids and gases and the thermal conductivity of radiation in the cells. A predictive model for the effective thermal conductivity of PUFs with different densities is presented. The predictive model was validated by comparing the predicted values with the experimentally measured ones. The result showed that the effective thermal conductivity increased from 0.023 to 0.027 W m−1 K−1 as the PUF density increased from 48 to 120 kg m−3: increased by 158% from 0.0034 to 0.0089 W m−1 K−1 for the thermal conductivity of solid PUF and decreased by 50% from 0.0037 to 0.0018 for the thermal conductivity of radiation.


Rigid polyurethane foams Effective thermal conductivity Thermal conductivity of radiation Extinction coefficient Morphology 

List of symbols


Mean cell diameter (m)


Spectral blackbody emissive power (W m−2 µm−1)


Fraction of solid in the struts


Solid polymer thermal conductivity (W m−1 K−1)


Thickness of the sample (m)


Refractive index of the porous media


Effective thermal conductivity (W m−1 K−1)


Conductivity of the blowing gas (W m−1 K−1)


Thermal conductivity of radiation in the cell (W m−1 K−1)


Thermal conductivity in solid polyurethane foam (W m−1 K−1)


Surface area to volume ratio of the cell


Cell wall thickness (m)


Mean foam temperature (K)


Spectral transmittance

Greek symbols


Void fraction in polyurethane foam


Stefan–Boltzmann constant


Total extinction coefficient


Density of the PUF


Density of the solid polymer


Extinction coefficient of a single polymer cell wall


Spectral extinction coefficient


Constant refractivity



The first author, Dr. Choi, thanks the Civil-military technology cooperation program funded by the ministry of Trade, Industry & Energy and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2015R1A2A2A01006203).

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Seo WJ, Park JH, Sung YT, Hwang DH, Kim WN, Lee HS. Properties of water-blown rigid polyurethane foams with reactivity of raw materials. J Appl Polym Sci. 2004;93(5):2334–42.CrossRefGoogle Scholar
  2. 2.
    Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP. Effect of foam density on the properties of water blown rigid polyurethane foam. J Appl Polym Sci. 2008;108(3):1810–7.CrossRefGoogle Scholar
  3. 3.
    Klempner D, Frisch KC. Handbook of polymeric foams and foam technology, vol. 404. Munich: Hanser; 1991.Google Scholar
  4. 4.
    Yu-Hallada LC, Reichel CJ. Zero-ODP rigid insulation foams prepared with HFAs. J Cell Plast. 1995;31(2):190–7.CrossRefGoogle Scholar
  5. 5.
    Kim YH, Choi SJ, Kim JM, Han MS, Kim WN, Bang KT. Effects of organoclay on the thermal insulating properties of rigid polyurethane poams blown by environmentally friendly blowing agents. Macromol Res. 2007;15(7):676–81.CrossRefGoogle Scholar
  6. 6.
    Zatorski W, Brzozowski ZK, Kolbrecki A. New developments in chemical modification of fire-safe rigid polyurethane foams. Polym Degrad Stab. 2008;93(11):2071–6.CrossRefGoogle Scholar
  7. 7.
    Li X, Cao H, Zhang Y. Properties of water blown rigid polyurethane foams with different functionality. J Wuhan Univ Technol Mater Sci Ed. 2008;23(1):125–9.CrossRefGoogle Scholar
  8. 8.
    Lerch B. Metering of flammable blowing agents. J Cell Plast. 1991;27(1):26.CrossRefGoogle Scholar
  9. 9.
    Kim BK, Seo JW, Jeong HM. Properties of waterborne polyurethane/nanosilica composite. Macromol Res. 2003;11(3):198–201.CrossRefGoogle Scholar
  10. 10.
    Yang KS, Guo X, Meng W, Hyun JY, Kang IK, Kim YI. Behavior of hepatocytes inoculated in gelatin-immobilized polyurethane foam. Macromol Res. 2003;11(6):488–94.CrossRefGoogle Scholar
  11. 11.
    Yun JK, Yoo HJ, Kim HD. Preparation and properties of waterborne polyurethane-urea/poly (vinyl alcohol) blends for high water vapor permeable coating materials. Macromol Res. 2007;15(1):22–30.CrossRefGoogle Scholar
  12. 12.
    Jung HC, Ryu SC, Kim WN, Lee YB, Choe KH, Kim SB. Properties of rigid polyurethane foams blown by HCFC 141B and distilled water. J Appl Polym Sci. 2001;81(2):486–93.CrossRefGoogle Scholar
  13. 13.
    Niyogi D, Kumar R, Gandhi KS. Water blown free rise polyurethane foams. Polym Eng Sci. 1999;39(1):199–209.CrossRefGoogle Scholar
  14. 14.
    Seo D, Youn JR. Numerical analysis on reaction injection molding of polyurethane foam by using a finite volume method. Polymer. 2005;46(17):6482–93.CrossRefGoogle Scholar
  15. 15.
    Kim HS, Lim H, Chul Song J, Kyu Kim B. Effect of blowing agent type in rigid polyurethane foam. J Macromol Sci Pure. 2008;45(4):323–7.CrossRefGoogle Scholar
  16. 16.
    Ciecierska E, Jurczyk-Kowalska M, Bazarnik P, Kowalski M, Krauze S, Lewandowska M. The influence of carbon fillers on the thermal properties of polyurethane foam. J Therm Anal Calorim. 2016;123(1):283–91.CrossRefGoogle Scholar
  17. 17.
    Park SB, Choi SW, Kim JH, Bang CS, Lee JM. Effect of the blowing agent on the low-temperature mechanical properties of CO2- and HFC-245fa-blown glass-fiber-reinforced polyurethane foams. Compos Part B Eng. 2016;93:317–27.CrossRefGoogle Scholar
  18. 18.
    Modarresifar F, Bingham PA, Jubb GA. Thermal conductivity of refractory glass fibres. J Therm Anal Calorim. 2016;125(1):35–44.CrossRefGoogle Scholar
  19. 19.
    Choi SW, Roh JU, Kim MS, Lee WI. Analysis of two main LNG CCS (cargo containment system) insulation boxes for leakage safety using experimentally defined thermal properties. Appl Ocean Res. 2012;37:72–89.CrossRefGoogle Scholar
  20. 20.
    Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. New York: Wiley; 2007.Google Scholar
  21. 21.
    Lim H, Kim EY, Kim BK. Polyurethane foams blown with various types of environmentally friendly blowing agents. Plast, Rubber Compos. 2010;39(8):364–9.CrossRefGoogle Scholar
  22. 22.
    Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge: Cambridge University Press; 1999.Google Scholar
  23. 23.
    Schuetz MA, Glicksman LR. A basic study of heat transfer through foam insulation. J Cell Plast. 1984;20(2):114–21.CrossRefGoogle Scholar
  24. 24.
    Poling BE, Prausnitz JM, O’connell JP. The properties of gases and liquids, vol. 5. New York: Mcgraw-Hill; 2001.Google Scholar
  25. 25.
    Moreno JD. Radiative transfer and thermal performance levels in foam insulation boardstocks. PhD Thesis. Massachusetts Institute of Technology; 1991.Google Scholar
  26. 26.
    Howell JR, Menguc MP, Siegel R. Thermal radiation heat transfer. Boca Raton: CRC Press; 2010.Google Scholar
  27. 27.
    Mozgowiec MD. The use of small cells to reduce radiation heat transfer in foam Insulation. PhD Thesis. Massachusetts Institute of Technology; 1990.Google Scholar
  28. 28.
    Tseng CJ. Thermal radiative properties of phenolic foam insulation. J Quant Spectrosc. 2002;72(4):349–59.CrossRefGoogle Scholar
  29. 29.
    Wu JW, Sung WF, Chu HS. Thermal conductivity of polyurethane foams. Int J Heat Mass Trans. 1999;42(12):2211–7.CrossRefGoogle Scholar
  30. 30.
    Hilyard NC, Cunningham A. Low density cellular plastics: physical basis of behavior. Sheffield: Springer; 2012.Google Scholar
  31. 31.
    Schindler A, Neumann G, Stobitzer D, Vidi S. Accuracy of a guarded hot plate (GHP) in the temperature range between −160°C and 700°C. High Temp High Press. 2016;45(2):81–96.Google Scholar
  32. 32.
    Wood G. The ICI polyurethane handbook, 2nd ed. New York: Wiely; 1990.Google Scholar
  33. 33.
    Oertel G. Polyurethane handbook. New York: Hanser; 1993.Google Scholar
  34. 34.
    Niyogi D, Kumar R, Gandhi KS. Modeling of bubble-size distribution in free rise polyurethane foams. AIChE J. 1992;38(8):1170–84.CrossRefGoogle Scholar
  35. 35.
    Niyogi D, Kumar R, Gandhi KS. Water blown free rise polyurethane foams. Polym Eng Sci. 1999;39(1):199–209.CrossRefGoogle Scholar
  36. 36.
    Navickas J, Madsen RA. Aging characteristics of polyurethane foam insulation. In: Advances in cryogenic engineering. Springer; 1977, p. 233–41.Google Scholar
  37. 37.
    Schuetz MA. Heat transfer in foam insulation. PhD Thesis. Massachusetts Institute of Technology; 1983.Google Scholar
  38. 38.
    Boetes R. Heat transfer reduction in closed cell polyurethane foams. PhD Thesis. Technische Universiteit Delft; 1986.Google Scholar
  39. 39.
    Norton FJ. Diffusion of chlorofluorocarbon gases in polymer films and foams. J Cell Plast. 1982;18(5):300–15.CrossRefGoogle Scholar
  40. 40.
    Sinofsky M. Property measurement and thermal performance prediction of foam insulations. PhD Thesis. Massachusetts Institute of Technology; 1984.Google Scholar
  41. 41.
    Jarfelt U, Ramnäs O. Thermal conductivity of polyurethane foam-best performance. In: 10th International symposium on district heating and cooling. Chalmers University of Technology Goteborg: Sweden; 2006, p. 3–5.Google Scholar
  42. 42.
    Park DH, Park GP, Kim SH, Kim WN. Effects of isocyanate index and environmentally-friendly blowing agents on the morphological, mechanical, and thermal insulating properties of polyisocyanurate-polyurethane foams. Macromol Res. 2013;21(8):852–9.CrossRefGoogle Scholar
  43. 43.
    Tseng CJ, Yamaguchi M, Ohmori T. Thermal conductivity of polyurethane foams from room temperature to 20 K. Cryogenics. 1997;37(6):305–12.CrossRefGoogle Scholar
  44. 44.
    Semsarzadeh MA, Navarchian AH. Effects of NCO/OH ratio and catalyst concentration on structure, thermal stability, and crosslink density of poly (urethane-isocyanurate). J Appl Polym Sci. 2003;90(4):963–72.CrossRefGoogle Scholar
  45. 45.
    Bilbao R, Mastral JF, Ceamanos J, Aldea ME. Kinetics of the thermal decomposition of polyurethane foams in nitrogen and air atmospheres. J Anal Appl Pyrol. 1996;37(1):69–82.CrossRefGoogle Scholar
  46. 46.
    Dick C, Dominguez-Rosado E, Eling B, Liggat JJ, Lindsay CI, Martin SC, Mohammed MH, Seeley G, Snape CE. The flammability of urethane-modified polyisocyanurates and its relationship to thermal degradation chemistry. Polymer. 2001;42(3):913–23.CrossRefGoogle Scholar
  47. 47.
    Chang TC, Shen WS, Chiu YS, Ho SY. Thermo-oxidative degradation of phosphorus-containing polyurethane. Polym Degrad Stab. 1995;49(3):353–60.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.LNG Cryogenic Technology CenterKorea Institute of Machinery and MaterialsNongso-ri, Juchon-myeon, Gimhae-si, Gyeongsangnam-doRepublic of Korea
  2. 2.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations