Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 1423–1427 | Cite as

Use of DSC in degree of conversion of dimethacrylate polymers: easier and faster than MIR technique

  • Rafael Turra Alarcon
  • Caroline Gaglieri
  • Arthur Rossi de Oliveira
  • Gilbert Bannach


This work aims to determine the degree of conversion of polymers obtained using diurethane dimethacrylate (UDMA) monomer by two different techniques: differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (MIR). The measurements were made in triplicate on both equipment, which resulted in average values for MIR 79.52 ± 3.57% (camphorquinone photoinitiator) and 78.15 ± 1.86% (fluorescein photoinitiator) and for DSC 80.85 ± 1.06 and 78.27 ± 1.71%. The DSC technique showed higher accuracy and lesser standard deviation. Furthermore, this technique is easier and faster than the MIR, and in situ polymerization is not necessary on the DSC equipment.


Photopolymerization DSC MIR Degree of conversion Techniques comparison Dimethacrylate 



The authors wish to thank CAPES (Proc. 024/2012 Pro-equipment), POSMAT/UNESP, and FAPESP (Processes: 2 2013/09022-7 and 2017/08820-8) for financial support.


  1. 1.
    Fouassier JP, Allonas X, Burguet D. Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications. Prog Org Coat. 2003;47:16–36.CrossRefGoogle Scholar
  2. 2.
    Jakubiak J, Nie J, Línden LA, Rabek JF. Crosslinking photocopolymerization of acrylic acid (and N-vinylpyrrolidone) with triethylene glycol dimethacrylate initiated by camphorquinone/ethyl-4-dimethylaminobenzoate. J Polym Sci Polym Chem. 2001;38:876–86.CrossRefGoogle Scholar
  3. 3.
    Lu H, Lovell LG, Bowman CN. Exploiting the heterogeneity of cross-linked photopolymers to create high-Tg polymers from polymerizations performed at ambient conditions. Macromolecules. 2001;34:8021–5.CrossRefGoogle Scholar
  4. 4.
    Ye Q, Spencer P, Wang Y, Misra A. Relationship of solvent to the photopolymerization process, properties, and structure in model dentin adhesives. J Biomater Mater Res. 2007;80:342–50.CrossRefGoogle Scholar
  5. 5.
    Rodrigues MR, Neumann MG. Fotopolimerização: princípios e métodos. Polim Cienc Tecnol. 2003;13:276–86.CrossRefGoogle Scholar
  6. 6.
    Lim KS, Schon BJ, Mekhileri NV, Brown GCJ, Chia CM, Prabakar S, Hooper GJ, Woodfield TBF. New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks. Biomater Sci Eng. 2016;10:1752–62.CrossRefGoogle Scholar
  7. 7.
    Guerra RM, Durán I, Ortiz P. FTIR monomer conversion analysis of UDMA-based dental resins. J Oral Rehabil. 1996;23:632–7.CrossRefGoogle Scholar
  8. 8.
    Alarcon RT, Holanda BBC, Rinaldo D, Caires FJ, de Almeida MV, Bannach G. Synthesis, thermal studies and conversion degree of dimethacrylate polymer using new non-toxic coinithiators. Quim Nova. 2017;40:363–70.Google Scholar
  9. 9.
    Alarcon RT, Gaglieri C, da Silva BHST, Silva-Filho LC, Bannach G. New fluorescein derivatives and their use as an efficient photoiniator using blue light LED. J Photochem Photobiol A. 2017;343:112–8.CrossRefGoogle Scholar
  10. 10.
    Zhao J, Lalevée J, Lu H, MacQueen R, Kable SH, Schmidt TW, Stenzel MH, Xiao P. A new role of curcumin: as a multicolor photoinitiator for polymers fabrication under household UV to LED bulbs. Polym Chem. 2015;6:5053–61.CrossRefGoogle Scholar
  11. 11.
    de Oliveira DSBL, de Oliveira LSBL, Alarcon RT, Holanda BBC, Bannach G. Use of curcumin and glycerol as an effective photoinitiating system in the polymerization of urethane dimethacrylate. J Therm Anal Calorim. 2017;128:1671–82.CrossRefGoogle Scholar
  12. 12.
    Encinas MV, Rufus AM, Bertolotti SG, Previtali CM. Free radical polymerization photoinitiated by riboflavin/amines. Effect of the amine structure. Macromolecules. 2001;34:2845–7.CrossRefGoogle Scholar
  13. 13.
    Bertolotti SG, Previtali CM, Rufus AM, Encinas MV. Riboflavin/triethanolamine as photoinitiator system of vinyl polymerization. A mechanistic study by laser flash photolysis. Macromolecules. 1999;32:2920–4.CrossRefGoogle Scholar
  14. 14.
    Zhang J, Dumur F, Xiao P, Graff B, Gigmes D, Fouassier JP, Lalevée J. A benzophenone–naphthalimide derivative as versalite photoinitiator of polymerization under near UV and visible lights. J Polym Sci. 2015;553:451–5.Google Scholar
  15. 15.
    Moraes LGP, Rocha RSF, Menegazzo LM, de Araújo EB, Yukimito K, Moraes JCS. Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. J Appl Oral Sci. 2008;16:145–9.CrossRefGoogle Scholar
  16. 16.
    Eliades GC, Vougioklakes GJ, Caputo AA. Degree of double bond conversion in light-cured composites. Dent Mater. 1987;3:18–25.CrossRefGoogle Scholar
  17. 17.
    Albuquerque PPAC, Moreira ADL, Moraes RR, Cavalcante LM, Scheider LFJ. Color stability, conversion, water sorption and solubility of dental composites formulated with different photoinitiator systems. Dent Mater. 2013;41:e67–72.CrossRefGoogle Scholar
  18. 18.
    Scott TF, Cook WD, Forsythe JS. Photo-DSC cure kinetics of vinyl ester resins. I. Influence of temperature. Polymer. 2002;43:5839–45.CrossRefGoogle Scholar
  19. 19.
    Corcione CE, Frigione M, Maffezzoli A, Malucelli G. Photo-DSC and Real time FT-IR kinetic study of a UV curable epoxy resin containing o-Boehmites. Eur Polym J. 2008;44:2010–23.CrossRefGoogle Scholar
  20. 20.
    Hatekayama T, Quinn FX. Thermal analysis: fundamentals and applications to polymer science. New York: Willey; 1994.Google Scholar
  21. 21.
    Blom H, Yeh R, Wojnarowski R, Ling M. Detection of degradation of ABS materials via DSC. J Therm Anal Calorim. 2006;83:113–5.CrossRefGoogle Scholar
  22. 22.
    Ionashiro M, Caires FJ, Gomes DJ. GIOLITO: fundamentos da termogravimetria e análise térmica diferencial/calorimetria exploratória diferencial. 2nd ed. São Paulo: Giz; 2014.Google Scholar
  23. 23.
    Terrin MA, Horn MA, Neumann MG, Cavalheiro ET, Correa IC, Schimitt CC. Effect of the loading of organomodified clays on the thermal and mechanical properties of a model dental resin. Mater Res. 2016;19:40–4.CrossRefGoogle Scholar
  24. 24.
    Roberts DE. Heats of polymerization: A summary of published values ant their relation structure. J Res Natl Bur Stand. 1950;44:221–32.CrossRefGoogle Scholar
  25. 25.
    Tanimot Y, Hayakawa T, Nemoto K. Analysis of photopolymerization behavior of UDMA/TEGDMA resin mixture and its composite by differential scanning calorimetry. J Biomed. 2004;72B:310–5.Google Scholar
  26. 26.
    Canevarolo-Junior SV. Técnicas de caracterização de polímeros. 1st ed. São Paulo: Artliber Editora; 2007.Google Scholar
  27. 27.
    Miyazaki K, Horibe T. Polymerization of multifunctional methacrylates and acrylates. J Biomed Mater Res. 1988;22:1011–22.CrossRefGoogle Scholar
  28. 28.
    Morgan DR, Kalachandra S, Shobha HK, Gunduz N, Stejskal EO. Analysis of a dimethacrylate copolymer (Bis-GMA and TEGDMA) network by DSC and 13C solution and solid-state NMR spectroscopy. Biomater. 2000;21:1897–903.CrossRefGoogle Scholar
  29. 29.
    Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry. 6th ed. Harlow: Pearson Education Limited; 2010.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Rafael Turra Alarcon
    • 1
  • Caroline Gaglieri
    • 1
  • Arthur Rossi de Oliveira
    • 1
  • Gilbert Bannach
    • 1
  1. 1.Chemistry Department, School of SciencesSão Paulo State University (UNESP)BauruBrazil

Personalised recommendations