Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 3, pp 1961–1968 | Cite as

Evaluation on thermal stability and kinetics of 2,2′-azobis(2,4-dimethyl)valeronitrile in aerobic and anaerobic conditions under isothermal process



We quantified the thermal stability of 2,2′-azobis(2,4-dimethyl)valeronitrile (ADVN) under isothermal conditions through thermogravimetry (TG), differential scanning calorimetry (DSC), and model-free as well as model-fitting methods. We selected two gaseous atmospheres—N2 and air—to observe the thermal degradation behaviors of ADVN with or without O2 by TG. The results showed that when oxygen was present, the mass loss and thermal degradation rate of ADVN decreased because of azoxy compounds production. In addition, the thermal degradation behaviors of ADVN were noticeable at 30 °C, which is close to room temperature. Therefore, storage and transportation of ADVN should be appropriately controlled under low-temperature conditions. Finally, the kinetic behaviors of ADVN were determined using DSC data, model-free, and model-fitting methods under isothermal conditions.


Azoxy compounds Isothermal conditions Kinetic behaviors Model-free and model-fitting method Thermal degradation behaviors 



Financial support for this work was provided by projects of the China Postdoctoral Science Foundation (No. 2017M610918).


  1. 1.
    Chiang CL, Liu SH, Lin YC, Shu CM. Thermal release hazard for the decomposition of cumene hydroperoxide in the presence of incompatibles using differential scanning calorimetry, thermal activity monitor III, and thermal imaging camera. J Therm Anal Calorim. 2017;127:1061–9.CrossRefGoogle Scholar
  2. 2.
    Yang Y, Tsai YT, Cao CR, Shu CM. Kinetic and thermal safety analysis for tert-butyl peroxy-3,5,5-trimethylhexanoate by advanced calorimetric technology. J Therm Anal Calorim. 2017;127:2253–62.CrossRefGoogle Scholar
  3. 3.
    Porada S, Czerski G, Dziok T, Grzywacz P, Makowska D. Kinetics of steam gasification of bituminous coals in terms of their use for underground coal gasification. Fuel Process Technol. 2015;130:282–91.CrossRefGoogle Scholar
  4. 4.
    Artini C, Nelli L, Pani M, Costa GA, Caratto V, Locardi F. Thermal decomposition of Ce-Sm and Ce-Lu mixed oxalates: influence of the Sm- and Lu-doped ceria structure. Thermochim Acta. 2017;651:100–7.CrossRefGoogle Scholar
  5. 5.
    Chen WC, Lin JR, Liao MS, Wang YW, Shu CM. Green approach to evaluating the thermal hazard reaction of peracetic acid through various kinetic methods. J Therm Anal Calorim. 2017;127:1019–26.CrossRefGoogle Scholar
  6. 6. (2011). Accessed 11 July 2017.
  7. 7.
    Liu SH, Chen YC, Hou HY. Thermal runaway hazard studies for ABVN mixed with acids or alkalines by DSC, TAM III, and VSP2. J Therm Anal Calorim. 2015;122:1107–16.CrossRefGoogle Scholar
  8. 8.
    Zhang T, Xie CX, Jin MP, Sun F, Zhang LL. Study on thermal hazard of ABVN and influence of impurities. Acta Physico Chimica Sinica. 2012;22:122–7.Google Scholar
  9. 9.
    Wei W (2013) Study on thermal hazards of oil-soluble azo initiators. Nanjing University of Science & Technology, Master Thesis, Nanjing, PR China.Google Scholar
  10. 10.
    Yang Y, Tsai YT, Zhang Y, Shu CM, Deng J. Inhibition of spontaneous combustion for different metamorphic degrees of coal using Zn/Mg/Al–CO3 layered double hydroxides. Process Saf Environ. 2018;113:401–12.CrossRefGoogle Scholar
  11. 11.
    Li KY, Tsai SY, Lin CP, Tsai YT, Shu CM. Smart technology for evaluating fire Extinguishing effect of tert-butyl hydroperoxide. Ind Eng Chem Res. 2013;52:10969–76.CrossRefGoogle Scholar
  12. 12.
    Tong JW, Chen WC, Tsai YT, Cao Y, Chen JR, Shu CM. Incompatible reaction for (3-4-epoxycyclohexane) methyl-3′-4′-epoxycyclohexyl-carboxylate (EEC) by calorimetric technology and theoretical kinetic model. J Therm Anal Calorim. 2014;116:1445–52.CrossRefGoogle Scholar
  13. 13.
    Wang C, Yang Y, Tsai YT, Deng J, Shu CM. Spontaneous combustion in six types of coal by using the simultaneous thermal analysis-Fourier transform infrared spectroscopy technique. J Therm Anal Calorim. 2016;126:1591–602.CrossRefGoogle Scholar
  14. 14.
    Yang Y, Tsai YT. Evaluation on the photosensitivity of 2,2′-azobis(2,4-dimethyl)valeronitrile with UV. Molecules. 2017;22:2219.CrossRefGoogle Scholar
  15. 15.
    Shu CM, Chang YH, Chiu CW. Evaluation on the thermal stability and hazards behaviors of ADVN using green thermal analysis approach. J Civil Eng. 2016;10:280–90.Google Scholar
  16. 16.
    Wan W, Chen W, Wei S, Shen Z, Zhang C. Analysis and assessment of the thermal safety of azobisisobutyronitril. China Saf Sci J. 2012;22:131–7.Google Scholar
  17. 17.
    Lu KM, Lee WJ, Chen WH, Lin TC. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Appl Energ. 2013;105:57–65.CrossRefGoogle Scholar
  18. 18.
    Tsai YT, You ML, Qian XM, Shu CM. Calorimetric techniques combined with various thermokinetic models to evaluate incompatible hazard of tert-butyl peroxy-2-ethyl hexanoate mixed with metal ions. Ind Eng Chem Res. 2013;52:8206–15.CrossRefGoogle Scholar
  19. 19.
    Han Z, Sachdeva S, Papadaki M, Mannan S. Effects of inhibitor and promoter mixtures on ammonium nitrate fertilizer explosion hazards. Thermochim Acta. 2016;624:69–75.CrossRefGoogle Scholar
  20. 20.
    Šesták J. The quandary aspects of non-isothermal kinetics beyond the ICTAC kinetic committee recommendations. Thermochim Acta. 2015;611:26–35.CrossRefGoogle Scholar
  21. 21.
    Guide Chem, (2015). Accessed 5 May 2017.
  22. 22.
    Ramírez C, Rico M, Torres A, Barral L, López J, Montero M. Macromolecular nanotechnology-review Epoxy/POSS organic–inorganic hybrids: ATR-FTIR and DSC studies. Eur Polym J. 2008;44:3035–45.CrossRefGoogle Scholar
  23. 23.
    Bacosca L, Hamciuc E, Cristea M, Lisa G, Bruma M. Poly(ether imide)s containing cyano substituents and thin films made from them. Thermochim Acta. 2012;124:1956–66.Google Scholar
  24. 24.
    Sovizi MR. Thermal behavior of drugs: investigation on decomposition kinetic of naproxen and celecoxib. J Therm Anal Calorim. 2010;102:285–9.CrossRefGoogle Scholar
  25. 25.
    Alonso MV, Oliet M, Garc´ıa J, Echeverr´ıa J, Oliet M. Gelation and isoconversional kinetic analysis of lignin–phenol–formaldehyde resol resins cure. Chem Eng J. 2006;122:159–66.CrossRefGoogle Scholar
  26. 26.
    Pérez JM, Oliet M, Alonso MV, Rodr´ıguez F. Cure kinetics of lignin–novolac resins studied by isoconversional methods. Thermochim Acta. 2009;487:39–42.CrossRefGoogle Scholar
  27. 27.
    Park SJ, Jin FL. Thermal stabilities and dynamic mechanical properties of sulfone-containing epoxy resin cured with anhydride. Polym Degrad Stabil. 2004;86:515–20.CrossRefGoogle Scholar
  28. 28.
    Li KY, Tsai SY, Lin CP, Tsai YT, Shu CM. Smart technology for evaluating fire extinguishing effect of tert-butyl hydroperoxide. Ind Eng Chem Res. 2013;52:10969–76.CrossRefGoogle Scholar
  29. 29.
    Doyle CD. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem. 1961;22:77–9.CrossRefGoogle Scholar
  30. 30.
    National Institute of Standard and Technology. (2011). Accessed 16 Aug 2017.
  31. 31.
    Newbold BT. Hydrazo azo, and azoxy groups: part 1. In: Patai S, editor. Oxidation and synthetic uses of hydrazo azo, and azoxy compounds, vol. 1. Chichester: Wiley; 2010. p. 541. ISBN 9780-4716-69265.Google Scholar
  32. 32.
    Chiu YC, Tsai HC. Thermal and morphology properties of various silica contents in sulfone epoxy nanocomposites. J Appl Polym Sci. 2012;125:E523–31.CrossRefGoogle Scholar
  33. 33.
    Jin FL, Park SJ. Thermal properties of epoxy resin/filler hybrid composites. Polym Degrad Stabil. 2012;97:2148–53.CrossRefGoogle Scholar
  34. 34.
    Liu SH, Kuan CF, Kuan HC, Shen MY, Yang JM, Chiang CL. Preparation and flame retardance of polyurethane composites containing microencapsulated melamine polyphosphate. Polymers. 2017;9:407.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institute of Public Safety Research, Department of Engineering PhysicsTsinghua UniversityHaidan, BeijingChina
  2. 2.School of Chemical Engineering and TechnologyXi’an Jiaotong UniversityXi’anChina

Personalised recommendations