Skip to main content
Log in

Preparation and characterization of stearic acid/polyurethane composites as dual phase change material for thermal energy storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cross-linked polyurethane (PU) is a promising supporting material for phase change materials (PCMs) because it has excellent physical properties, high impact strength and relatively good chemical resistance. PU prepared from polyethylene glycol can also function as solid–solid PCMs. In this paper, PU/SA composites were synthesized as dual PCMs by entrapping SA into cross-linked PU through in situ polymerization. SA served as a PCM, while cross-linked PU served as both a PCM and supporting material. Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction (XRD), polarizing optical microscopy (POM), thermogravimetric analysis (TG) and scanning electron microscopy (SEM) were used to investigate the chemical structure and basic properties of PU/SA composites. The XRD and POM patterns indicate that the synthesized composite has a completely crystalline structure and defective crystallization compared with pristine PEG and SA. The maximum enthalpy of the composite in the heating (cooling) process reaches 167.1 J g−1 (165.4 J g−1), which is 169.35% higher than that of PU. TG results show that the synthesized composites possess good thermal stability. It is clearly that the resulting PU/SA composites are sure to have great potential in thermal energy storage due to their large latent heat, suitable phase change temperature and high thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65:67–123.

    Article  CAS  Google Scholar 

  2. Sarier N, Onder E. Organic phase change materials and their textile applications: an overview. Thermochim Acta. 2012;540:7–60.

    Article  CAS  Google Scholar 

  3. Chang SJ, Wi S, Jeong S, Kim S. Analysis on phase transition range of the pure and mixed phase change materials (PCM) using a thermostatic chamber test and differentiation. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6603-y.

    Google Scholar 

  4. Li B, Zeng D, Yin X, Chen Q. Theoretical prediction and experimental determination of room-temperature phase change materials using hydrated salts as agents. J Therm Anal Calorim. 2010;100:685–93.

    Article  CAS  Google Scholar 

  5. Baetens R, Jelle BP, Gustavsen A. Phase change materials for building applications: a state-of-the-art review. Energ Build. 2010;42:1361–8.

    Article  Google Scholar 

  6. Kim EY, Kim HD. Preparation and properties of microencapsulated octadecane with waterborne polyurethane. J Appl Polym Sci. 2005;96:1596–604.

    Article  CAS  Google Scholar 

  7. Tang B, Wang L, Xu Y, Xiu J, Zhang S. Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage. Sol Energ Mat Sol C. 2016;144:1–6.

    Article  CAS  Google Scholar 

  8. Sarı A, Biçer A, Karaipekli A, Alkan C, Karadag A. Synthesis, thermal energy storage properties and thermal reliability of some fatty acid esters with glycerol as novel solid–liquid phase change materials. Sol Energ Mat Sol C. 2010;94:1711–5.

    Article  Google Scholar 

  9. Alkan C, Canik G, Dünya H, Sarı A. Synthesis and thermal energy storage properties of ethylene dilauroyl, dimyristoyl, and dipalmitoyl amides as novel solid–liquid phase change materials. Sol Energ Mat Sol C. 2011;95:1203–7.

    Article  CAS  Google Scholar 

  10. Zhang Y, Zheng X, Wang H, Du Q. Encapsulated phase change materials stabilized by modified graphene oxide. J Mater Chem A. 2014;2:5304–14.

    Article  CAS  Google Scholar 

  11. Chen Z, Wang J, Yu F, Zhang Z, Gao X. Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J Mater Chem A. 2015;3:11624–30.

    Article  CAS  Google Scholar 

  12. Karaipekli A, Sarı A. Capric–myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage. Sol Energy. 2009;83:323–32.

    Article  CAS  Google Scholar 

  13. Wang L, Meng D. Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage. Appl Energ. 2010;87:2660–5.

    Article  CAS  Google Scholar 

  14. Fang Y, Yu H, Wan W, Gao X, Zhang Z. Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials. Energ Convers Manag. 2013;76:430–6.

    Article  CAS  Google Scholar 

  15. Jiao C, Ji B, Fang D. Preparation and properties of lauric acid–stearic acid/expanded perlite composite as phase change materials for thermal energy storage. Mater Lett. 2012;67:352–4.

    Article  CAS  Google Scholar 

  16. Fu X, Kong W, Zhang Y, Jiang L, Wang J, Lei J. Novel solid–solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage. RSC Adv. 2015;5:68881–9.

    Article  CAS  Google Scholar 

  17. Liu Z, Fu X, Jiang L, Wu B, Wang J, Lei J. Solvent-free synthesis and properties of novel solid–solid phase change materials with biodegradable castor oil for thermal energy storage. Sol Energ Mat Sol C. 2016;147:177–84.

    Article  CAS  Google Scholar 

  18. Karaman S, Karaipekli A, Sarı A, Biçer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energ Mat Sol C. 2011;95:1647–53.

    Article  CAS  Google Scholar 

  19. Alkan C, Günther E, Hiebler S, Himpel M. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials. Energ Convers Manag. 2012;64:364–70.

    Article  CAS  Google Scholar 

  20. Yuan Y, Zhang N, Tao W, Cao X, He Y. Fatty acids as phase change materials: a review. Renew Sustain Energy Rev. 2014;29:482–98.

    Article  CAS  Google Scholar 

  21. Cao L, Tang Y, Fang G. Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage. Energy. 2015;80:98–103.

    Article  CAS  Google Scholar 

  22. Şentürk SB, Kahraman D, Alkan C, Gökçe I. Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohyd Polym. 2011;84:141–4.

    Article  Google Scholar 

  23. Alkan C, Sari A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol Energy. 2008;82:118–24.

    Article  CAS  Google Scholar 

  24. Sarı A, Alkan C, Biçer A, Karaipekli A. Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid–solid phase change materials. Sol Energ Mat Sol C. 2011;95:3195–201.

    Article  Google Scholar 

  25. Yuan Y, Li T, Zhang N, Cao X, Yang X. Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application. J Therm Anal Calorim. 2016;124:881–8.

    Article  CAS  Google Scholar 

  26. Cao Q, Liu P. Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage. Eur Polym J. 2006;42:2931–9.

    Article  CAS  Google Scholar 

  27. Su J, Liu P. A novel solid–solid phase change heat storage material with polyurethane block copolymer structure. Energ Convers Manage. 2006;47:3185–91.

    Article  CAS  Google Scholar 

  28. Ke H. Morphology and thermal performance of quaternary fatty acid eutectics/polyurethane/Ag form-stable phase change composite fibrous membranes. J Therm Anal Calorim. 2017;129:1533–45.

    Article  CAS  Google Scholar 

  29. Chen C, Liu W, Wang H, Peng K. Synthesis and performances of novel solid–solid phase change materials with hexahydroxy compounds for thermal energy storage. Appl Energ. 2015;152:198–206.

    Article  CAS  Google Scholar 

  30. Kong Weibo, Xiaowei Fu, Yuan Ye, Liu Zhimeng, Lei Jingxin. Preparation and thermal properties of crosslinked polyurethane/lauric acid composites as novel form stable phase change materials with a low degree of supercooling. RSC Adv. 2017;7:29554–62.

    Article  CAS  Google Scholar 

  31. Kong W, Lei Y, Jiang Y, Lei J. Preparation and thermal performance of polyurethane/PEG as novel form-stable phase change materials for thermal energy storage. J Therm Anal Calorim. 2017;130:1011–9.

    Article  CAS  Google Scholar 

  32. Liu Z, Wu B, Fu X, Yan P, Yuan Y, Zhou C, Lei J. Two components based polyethylene glycol/thermosetting solid-solid phase change material composites as novel form stable phase change materials for flexible thermal energy storage application. Sol Energ Mat Sol C. 2017;170:197–204.

    Article  CAS  Google Scholar 

  33. Sarier N, Onder E. Thermal characteristics of polyurethane foams incorporated with phase change materials. Thermochim Acta. 2007;454:90–8.

    Article  CAS  Google Scholar 

  34. Song S, Dong L, Zhang Y, Chen S, Li Q, Guo Y, Deng S, Si S, Xiong C. Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage. Energy. 2014;76:385–9.

    Article  CAS  Google Scholar 

  35. He Y, Zhang X, Zhang Y, Song Q, Liao X. Utilization of lauric acid-myristic acid/expanded graphite phase change materials to improve thermal properties of cement mortar. Energ Build. 2016;133:547–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxin Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Fu, W., Kong, B. et al. Preparation and characterization of stearic acid/polyurethane composites as dual phase change material for thermal energy storage. J Therm Anal Calorim 132, 907–917 (2018). https://doi.org/10.1007/s10973-018-6977-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-6977-5

Keywords

Navigation