Skip to main content
Log in

Thermal and kinetics studies of primary, secondary and tertiary alkanolammonium salts of 4-nitrobenzoic acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nitrobenzoic derivatives are chemically and biologically significant molecules, recently listed as active ingredients in the medical-pharmaceutic field. A series of p-nitrobenzoic acid salts were synthesized with different substituted alkanolamine (ethanolamine, diethanolamine and triethanolamine) via proton exchange reactions and characterized. Fourier transform infrared spectroscopy—FTIR-UATR, and a combination of thermal techniques (differential scanning calorimetry—DSC, and thermogravimetric analysis—TGA) with hot-stage microscopy were used in order to demonstrate the formation of salts and to analyse thermal stability and phase transitions. The aim of this study is to investigate thermal behaviour and kinetics of this class of compounds, previously poorly examined, which offers interesting phase transformations in the solid state. DSC indicated that the synthesized salts had very distinct melting points. Diethanolamine and triethanolamine used as cation in the formation of multicomponent systems with 4-nitrobenzoic acid lead to melting points near 100 °C, compared to compound based on ethanolamine. Calorimetric and thermogravimetric data indicate the absence of solvate forms in all studied compounds. TGA and kinetic experiments allowed the calculation of the activation energy, revealing that triethanolammonium salt has the highest stability in this studied series of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ono N. The nitro group in organic synthesis. New York: Wiley; 2002.

    Google Scholar 

  2. Zaragoza Dörwald F. Nitro compounds. Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA; 2012.

    Google Scholar 

  3. Zollinger H. Color chemistry. New York: VCH Publishers; 1987.

    Google Scholar 

  4. Gasiewicz TA. Nitro compounds and related phenolic pesticides. In: Hayes WR, Laws ER, editors. Handbook of pesticide toxicology. Cambridge: Academic Press Inc.; 1991. p. 1191–270.

    Google Scholar 

  5. Straus MJ. The nitroaromatic group in drug design. Pharmacology and toxicology (for nonpharmacologists). Ind Eng Chem Prod Res Dev. 1979;18:158–66.

    Article  Google Scholar 

  6. Walsh JS, Miwa GT. Bioactivation of drugs: risk and drug design. Annu Rev Pharmacol Toxicol. 2011;51:145–67.

    Article  CAS  Google Scholar 

  7. Truong DD. Tolcapone: review of its pharmacology and use as adjunctive therapy in patients with Parkinson’s disease. Clin Interv Aging. 2009;4:109–13.

    Article  CAS  Google Scholar 

  8. Sorkin EM, Clissold SP, Brogden RN. Nifedipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in ischaemic heart disease, hypertension and related cardiovascular disorders. Drugs. 1985;30:182–274.

    Article  CAS  Google Scholar 

  9. Mattila MAK, Larni HM. Flunitrazepam: a review of its pharmacological properties and therapeutic use. Drugs. 1980;20:353–74.

    Article  CAS  Google Scholar 

  10. Agarwal A, Dhole TN, Sharma YK. Evaluation of p-nitro benzoic acid (pnb) inhibition test to differentiate Mycobacterium tuberculosis complex from non-tuberculous mycobacteria using microscopic observation of drug susceptibility (MODS) methodology. Indian J Tuberc. 2014;61:232–5.

    CAS  Google Scholar 

  11. Shakoor S, Ahsan T, Jabeen K, Raza M, Hasan R. Use of p-nitrobenzoic acid in 7H10 agar for identification of Mycobacterium tuberculosis complex: a field study. Int J Tuberc Lung Dis. 2010;14:1644–6.

    CAS  Google Scholar 

  12. Dinesh Kumar G, Amirthaganesan G, Sethuram M. Synthesis, spectral, structural, thermal and optical studies on dimethylammonium 4-nitrobenzoate—an organic charge transfer complex. Optik. 2016;127:336–40.

    Article  Google Scholar 

  13. Arumanayagam T, Murugakoothan P. Growth, linear and nonlinear optical studies on guanidinium 4-nitrobenzoate (GuNB): an organic NLO material. Optik. 2012;123:1153–6.

    Article  CAS  Google Scholar 

  14. Sasikala V, Sajan D, Job Sabu K, Arumanayagam T, Murugakoothan P. Electronic structure, vibrational spectral and intervening orbital interactions studies of NLO material: guanidinium 4-nitrobenzoate. Spectrochim Acta A Mol Biomol Spectrosc. 2015;139:555–72.

    Article  CAS  Google Scholar 

  15. Selvakumar E, Anandha babu G, Ramasamy P, Rajnikant, Murugesan V, Chandramohan A. Synthesis, growth and spectroscopic investigation of an organic molecular charge transfer crystal: 8-hydroxy quinolinium 4-nitrobenzoate 4-nitrobenzoic acid. Spectrochim Acta A Mol Biomol Spectrosc. 2014;117:259–63.

    Article  CAS  Google Scholar 

  16. Hernández-Paredes J, Terán-Reprieto ME, Esparza-Ponce HE, Sotelo-Mundo RR, Hernández-Negrete O, Reyes-Márquez V, Álvarez-Ramos ME. Growth and characterization of l-histidinium-4-nitrobenzoate (1:1) multi-component molecular complex. J Mol Struct. 2015;1102:323–30.

    Article  Google Scholar 

  17. Shkir M, AlFaify S, Abbas H, Muhammad S. First principal studies of spectroscopic (IR and Raman, UV–visible), molecular structure, linear and nonlinear optical properties of l-arginine p-nitrobenzoate monohydrate (LANB): a new non-centrosymmetric material. Spectrochim Acta A Mol Biomol Spectrosc. 2015;147:84–92.

    Article  CAS  Google Scholar 

  18. Kavitha CN, Kaur M, Anderson BJ, Jasinski JP, Yathirajan HS. 1-Piperonylpiperazinium 4-nitrobenzoate monohydrate. Acta Crystallogr Sect E: Struct Rep Online. 2014;70:o270–1.

    Article  CAS  Google Scholar 

  19. Balasubramani K, Fun H-K. 2,3-Diamino-pyridinium 4-nitro-benzoate. Acta Crystallogr Sect E: Struct Rep Online. 2009;65:o1511–2.

    Article  CAS  Google Scholar 

  20. Srinivasan BR, Sawant JV, Raghavaiah P. Synthesis, spectroscopy, thermal studies and supramolecular structures of two new alkali-earth 4-nitrobenzoate complexes containing coordinated imidazole. J Chem Sci. 2007;119:11–20.

    Article  CAS  Google Scholar 

  21. Chumakov Y, Simonov Y, Grozav M, Crisan M, Bocelli G, Yakovenko A, Lyubetsky D. Hydrogen-bonding network in the organic salts of 4-nitrobenzoic acid. Cent Eur J Chem. 2006;4:458–75.

    CAS  Google Scholar 

  22. Crisan M, Bourosh P, Chumakov Y, Petric M, Ilia G. Supramolecular assembly and ab initio quantum chemical calculations of 2-hydroxyethylammonium salts of para-substituted benzoic acids. Cryst Growth Des. 2013;13:143–54.

    Article  CAS  Google Scholar 

  23. Chicu SA, Grozav M, Kurunczi L, Crisan M. SAR for amine salts of carboxylic acids to Hydractinia echinata. Rev Chim. 2008;59:582–7.

    CAS  Google Scholar 

  24. Crisan ME, Bourosh P, Maffei ME, Forni A, Pieraccini S, Sironi M, Chumakov YM. Synthesis, crystal structure and biological activity of 2-hydroxyethylammonium salt of p-aminobenzoic acid. PLoS ONE. 2014;9:e101892.

    Article  Google Scholar 

  25. Crisan M, Grozav M, Kurunczi L, Ilia G, Bertea C. Inhibitory effects of some synthetic monoethanolaminesalts of para-substituted benzoic acids and corresponding benzoic acids on cucumber seed germination. J Plant Interact. 2007;2:53–61.

    Article  CAS  Google Scholar 

  26. Crisan M, Grozav M, Bertea C. Arabidopsis thaliana seed germination and early seedling growth are inhibited by monoethanolamine salts of parahalogenated benzoic acids. J Plant Interact. 2009;4:271–7.

    Article  CAS  Google Scholar 

  27. Cruz-Cabeza AJ. Acid–base crystalline complexes and the pK a rule. CrystEngComm. 2012;4:6362–5.

    Article  Google Scholar 

  28. PubChem Compound Database https://www.ncbi.nlm.nih.gov/pccompound.

  29. Silverstein RM, Webster FX. Spectrometric identification of organic compounds. 6th ed. New York: Wiley; 1998.

    Google Scholar 

  30. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR. Introduction to spectroscopy. Boston: Cengage Learning, Brooks/Cole; 2009.

    Google Scholar 

  31. Serra R, Nomen R, Sempere J. The non-parametric kinetics. A new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim. 1998;52:933–43.

    Article  CAS  Google Scholar 

  32. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta. 1998;316:37–45.

    Article  CAS  Google Scholar 

  33. Vlase T, Vlase G, Doca N, Bolcu C. Processing of non-isothermal TG data. Comparative kinetic analysis with NPK method. J Therm Anal Calorim. 2005;80:59–64.

    Article  CAS  Google Scholar 

  34. Vlase T, Vlase G, Doca N, Ilia G, Fulias A. Coupled thermogravimetric-IR techniques and kinetic analysis by non-isothermal decomposition of Cd2+ and Co2+ vinyl-phosphonates. J Therm Anal Calorim. 2009;97:467–72.

    Article  CAS  Google Scholar 

  35. Friedman HL. Kinetics of thermal degradation of char-foaming plastics from thermogravimetry: application to a phenolic resin. J Polym Sci. 1965;6C:183–95.

    Google Scholar 

  36. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  37. Ozawa T. A new method of analysing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  38. Akahira T, Sunose T. Joint convention of four electrical institutes. Research report Chiba Institute of Technology. Sci Technol. 1971;16:22–31.

    Google Scholar 

  39. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  40. Birta N, Doca N, Vlase G, Vlase T. Kinetic of sorbitol decomposition under non-isothermal conditions. J Therm Anal Calorim. 2008;92:35–638.

    Article  Google Scholar 

  41. Anghel M, Vlase G, Bilanin M, Vlase T, Albu P, Fulias A, Tolan I, Doca N. Comparative study on the thermal behavior of two similar triterpenes from birch. J Therm Anal Calorim. 2013;113:1379–85.

    Article  CAS  Google Scholar 

  42. Ledeti I, Vlase G, Vlase T, Bercean V, Fulias A. Kinetic of solid state degradation of transitional coordinative compounds containing functionalized 1,2,4 -triazolic ligand. J Therm Anal Calorim. 2015;121(3):1049–57.

    Article  CAS  Google Scholar 

  43. Patrutescu C, Vlase G, Turcus V, Ardelean D, Vlase T, Albu P. TG/DTG/DTA data used for determining the kinetic parameters of the thermal degradation process of an immunosuppressive agent: mycophenolate mofetil. J Therm Anal Calorim. 2015;121(3):983–8.

    Article  CAS  Google Scholar 

  44. Ledeţi I, Vlase G, Vlase T, Fuliaş A, Şuta LM. Comparative thermal stability of two similar-structure hypolipidemic agents—Simvastatin and Lovastatin—kinetic study. J Therm Anal Calorim. 2016;125:769–75.

    Article  Google Scholar 

  45. Ledeţi I, Bercean V, Vlase G, Vlase T, Ledeţi A, Şuta L. Betulonic acid. Study of thermal degradation by kinetic approach. J Therm Anal Calorim. 2016;125:785–91.

    Article  Google Scholar 

  46. Fuliaş A, Ledeti I, Vlase G, Vlase T, Şoica C, Dehelean C, Oprean C, Bojin F, Şuta M, Bercean V, Avram S. Thermal degradation, kinetic analysis, and apoptosis induction in human melanoma for oleanolic and ursolic acids. J Therm Anal Calorim. 2016;125:759–68.

    Article  Google Scholar 

  47. Vlase G, Modra D, Albu P, Ceban I, Bolcu C, Vlase T. Thermal behavior of saturated phthalic-type polyesters. Influence of the branching polyol. J Therm Anal Calorim. 2017;127:409–14.

    Article  CAS  Google Scholar 

  48. Albu P, Doca SC, Anghel A, Vlase G, Vlase T. Thermal behavior of sodium alendronate. A kinetic study under non-isothermal conditions. J Therm Anal Calorim. 2017;127:571–6.

    Article  CAS  Google Scholar 

  49. Wall ME. Singular value decomposition and principal component analysis. In: Berrar DP, Dubitzky W, Granzow M, editors. A practical approach to microarray data analysis. Dordrecht: Kluwer; 2003. p. 91–109.

    Chapter  Google Scholar 

  50. Śestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the bilateral Moldova-Romanian project 16.80013.5007.04/Ro and the Romanian National Authority for Scientific Research and Innovation, CCCDI-UEFISCDI, project PN3-P3-217/24 BM/19.09.2016

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Vlase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crisan, M., Vlase, G., Szerb, E.I. et al. Thermal and kinetics studies of primary, secondary and tertiary alkanolammonium salts of 4-nitrobenzoic acid. J Therm Anal Calorim 132, 1409–1418 (2018). https://doi.org/10.1007/s10973-018-6975-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-6975-7

Keywords

Navigation