Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 227–236 | Cite as

Crystallization kinetics of yttrium aluminate glasses

  • Anna Prnová
  • Alfonz Plško
  • Jana Valúchová
  • Peter Švančárek
  • Róbert Klement
  • Monika Michálková
  • Dušan Galusek
Article
  • 64 Downloads

Abstract

Yttrium aluminate glasses with eutectic AY-E and near-eutectic composition AY-NE were prepared in the form of glass microspheres. Their basic characterization was carried out by XRD, optical microscopy and SEM. In DSC records of both samples, two exothermic peaks in temperature interval 940–1027 °C were observed. In both samples, YAG phase crystallized in two steps, as determined by HT XRD. DSC experiments conducted in the temperature interval 35–1200 °C at heating rates 2, 4, 6, 8 and 10 °C min−1 were performed, and the kinetic parameters of crystallization were determined with the use of the JMAK model. Crystallization in both samples was controlled by diffusion flow with linear nucleation rate time dependence. One-dimensional growth and formation of needle-like (dendritic) YAG crystals was observed in AY-E glass crystallized at 932 °C corresponding to the first exothermic maximum at the DSC curve. Two-dimensional growth and the presence of plate-like YAG crystals were observed in AY-NE glass crystallized at 996 °C. For the second exothermic effect, plate-like crystals crystallized at higher temperatures (996 and 1020 °C) in both compositions. The results of SEM analysis are in agreement with the results of kinetic calculations in the prepared systems.

Keywords

Crystallization kinetics HT XRD DSC Yttrium aluminate glasses 

Notes

Acknowledgements

The financial support of this work by the project SAS-MOST JRP 2015/6, VEGA 1/0631/14, VEGA 2/0026/17 and APVV 0014-15 is gratefully acknowledged. This publication was created in the frame of the project “Centre of excellence for ceramics, glass, and silicate materials” ITMS code 262 201 20056, based on the Operational Program Research and Development funded from the European Regional Development Fund.

References

  1. 1.
    Ochiai S, Ikeda S, Iwamoto S, Sha JJ, Okuda H, Waku Y, Nakagawa N, Mitani A, Sato M, Ishikawa T. Residual stresses in YAG phase of melt growth Al2O3/YAG eutectic composite estimated by indentation fracture test and finite element analysis. J Eur Ceram Soc. 2008;28:2309–17.CrossRefGoogle Scholar
  2. 2.
    Song K, Zhang J, Liu L. An Al2O3/Y3Al5O12 eutectic nanocomposite rapidly solidified by a new method: liquid–metal quenching. Scr Mater. 2014;92:39–42.CrossRefGoogle Scholar
  3. 3.
    Buyuk U, Engin S, Marasli N. Directional solidification of Zn–Al–Cu eutectic alloy by the vertical Bridgman method. J Min Metall B. 2015;51:67–72.CrossRefGoogle Scholar
  4. 4.
    Mesa MC, Oliete PB, Pastor YJ. Mechanical properties up to 1900 K of Al2O3/Er3Al5O12/ZrO2 eutectic ceramics grown by laser floating zone method. J Eur Ceram Soc. 2014;34:2081–7.CrossRefGoogle Scholar
  5. 5.
    Yu JZ, Zhang J, Su H-J. Fabrication and characterization of Al2O3/Y3Al5O12 eutectic in situ composite ceramics by double side laser zone remelting method. J Inorg Mater. 2012;27:843–8.CrossRefGoogle Scholar
  6. 6.
    Kurosawa S, Suzuki A, Yamaji A. Luminiscent properties of Cr-doped gallium garnet crystals grown by the micro-pulling- down method. J Cryst Growth. 2016;452:95–100.CrossRefGoogle Scholar
  7. 7.
    Dianguang L, Yan G, Jinling L, Fangzhoung L, Kai L, Haijun S, Yiguang W, Linan A. Preparation of Al2O3–Y3Al5O12–ZrO2 eutectic ceramic by flash sintering. Scr Mater. 2016;14:108–11.Google Scholar
  8. 8.
    Harada Y, Ayabe K, Uekawa N. Formation of GdAlO3–Al2O3 composite having fine pseudo-eutectic microstructure. J Eur Ceram Soc. 2008;28:2941–6.CrossRefGoogle Scholar
  9. 9.
    Harada Y, Uekawa N, Kojima T, Kokegawa K. Fabrication of Y3Al5O12–Al2O3 eutectic materials having ultra fine microstructure. J Eur Ceram Soc. 2008;28:235–40.CrossRefGoogle Scholar
  10. 10.
    Harada Y, Uekawa N, Kojima T, Kakegawa K. Formation of Y3Al5O12–Al2O3 eutectic microstructure with off-eutectic composition. J Eur Ceram Soc. 2008;28:1973–8.CrossRefGoogle Scholar
  11. 11.
    Yao B, Su H, Zhang J, Ren Q, Ma W, Liu L, Henghzhi F. Sintering densification and microstructure formation of bulk Al2O3/YAG autectic ceramics by hot pressing based on fine eutectic microstructure. Mater Des. 2016;92:213–22.CrossRefGoogle Scholar
  12. 12.
    Harada Y, Uekawa N, Kojima T, Kakegawa K. Development of formation method for homogenous and fine eutectic like microstructures with off eutectic composition in various rare-earth oxide—Al2O3 systems. Adv Appl Ceram. 2009;108:78–83.CrossRefGoogle Scholar
  13. 13.
    Raj R, Cologna M, Francis JS. Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J Am Ceram Soc. 2011;94:1941–65.CrossRefGoogle Scholar
  14. 14.
    Tarafder A, Molla AR, Karmakar B. Effects of nano-YAG (Y3Al5O12) crystallization on the structure and photoluminiscence properties of Nd3+-doped K2O–SiO2–Y2O3–Al2O3 glasses. Sol Sci. 2010;12:1756–63.CrossRefGoogle Scholar
  15. 15.
    Prnová A, Galusek D, Hnatko M, Kozánková J, Vávra I. Composites with eutectic microstructure by hot pressing of Al2O3–Y2O3 glass microspheres. Ceram Silik. 2011;55:208–13.Google Scholar
  16. 16.
    Šesták J, Šimon P, editors. Thermal analysis of micro, nano- and non-crystalline materials: transformation, crystallization, kinetics and thermodynamics. New York: Springer; 2013. p. 225–46.Google Scholar
  17. 17.
    Avrami M. Kinetics of phase change. III. Granulation, phase change, and microstructure kinetics of phase change. J Chem Phys. 1941;9:177–84.CrossRefGoogle Scholar
  18. 18.
    Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.CrossRefGoogle Scholar
  19. 19.
    Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.CrossRefGoogle Scholar
  20. 20.
    Kolmogorov AE. On the statistic theory of metal crystallization. Izv Akad Nauk SSSR Ser Mat. 1937;1:355–9 (in Russian).Google Scholar
  21. 21.
    Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Pet Eng. 1939;135:416–58.Google Scholar
  22. 22.
    Tanaka H. Thermal analysis and kinetics of solid state reactions. Thermochim Acta. 1995;267:29–44.CrossRefGoogle Scholar
  23. 23.
    Šesták J, Šatava V, Wendlandt WW. The study of heterogeneous processes by thermal analysis. Thermochim Acta. 1973;7:333–556.CrossRefGoogle Scholar
  24. 24.
    Málek J. The applicability of Johnson–Mehl–Avrami model in thermal analysis of crystallization kinetics of glasses. Thermochim Acta. 1995;267:61–73.CrossRefGoogle Scholar
  25. 25.
    Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetic committee recommendation for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  26. 26.
    Johnson JB, Omland KS. Model selection in ecology and evolution. Trends Ecol Evol. 2004;19:101–8.CrossRefGoogle Scholar
  27. 27.
    Cavanaugh JE. Criteria for linear model selection based on Kullback’s symmetric divergence. Aust N Y Stat. 2004;46:257–74.CrossRefGoogle Scholar
  28. 28.
    Akaike H. Information theory and an extension of maximum likehood principle. In: Petrov BN, Csáki F, editors. 2nd international symposium on information theory. Budapest: Akadémia Kiadó; 1973. p. 267–81.Google Scholar
  29. 29.
    Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716–23.CrossRefGoogle Scholar
  30. 30.
    Kim HJ, Cavanaugh JE. Model selection criteria based on Kullback information measures for nonlinear regression. J Stat Plan Inference. 2005;134:332–49.CrossRefGoogle Scholar
  31. 31.
    Roduit B, Hartmann M, Folly P, Sarbach A, Baltensperger R. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points. Thermochim Acta. 2014;579:31–9.CrossRefGoogle Scholar
  32. 32.
    Pechini MP. Method of preparing lead and alkaline-earth titanates and niobates and coating method using the same to form a capacitor. US Patent No. 3 330 697, 1967.Google Scholar
  33. 33.
    Prnová A, Bodišová K, Klement R, Migát M, Veteška P, Škrátek M, Bruneel E, Driessche IV, Galusek D. Preparation and characterization of Yb2O3–Al2O3 glasses by the Pechini sol–gel method combined with flame synthesis. Ceram Int. 2013;40:6179–84.CrossRefGoogle Scholar
  34. 34.
    Prnová A, Klement R, Bodišová K, Valúchová J, Galusek D, Bruneel E, Driessche IV. Thermal behaviour of ytrium aluminate glasses studied by DSC, high temperature X-ray diffraction, SEM and SEM-EDS. J Therm Anal Calorim. 2017;128:1407–15.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Anna Prnová
    • 1
  • Alfonz Plško
    • 1
  • Jana Valúchová
    • 1
  • Peter Švančárek
    • 1
  • Róbert Klement
    • 1
  • Monika Michálková
    • 1
  • Dušan Galusek
    • 1
  1. 1.Vitrum Laugaricio – Joint Glass Center of the IIC SAS, TnU AD and FCHTP STUTrenčínSlovak Republic

Personalised recommendations