Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 859–868 | Cite as

In situ microcalorimetric investigation on effects of surfactants on cluster-shaped Ni-doped Fe3O4 formation

  • Ailing Zhang
  • Zhaodong Nan


In situ calorimetric technology was firstly employed to study the effects of surfactants on the materials formation. In the present study, different kinds of surfactants were selected as additives during cluster-shaped Ni-doped Fe3O4 synthesis. Experimental results indicate that the surfactants reduced the particle size and changed the cationic distribution, compositions and magnetic properties of the as-synthesized materials. The microcalorimetric results demonstrate that the sample formation was endothermal and divided into five processes based on the heat-flow versus time curves. No significant effects of the surfactants on these processes were found. However, the surfactants addition affected the heat flow and the temperatures for peaks in these curves. The surfactant adsorption on the crystal facet and nuclei of the sample, and the interactions among surfactants and ions contained in the system may be mainly the reason for these effects. These results demonstrate different actions of surfactants and ligands on materials formation.


In situ calorimetry Magnetic nanoparticles Ni-doped Fe3Surfactants Mechanism 



The authors gratefully acknowledge the financial support from the National Nature Science Foundations of China (21673204 and 21273196) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hong D, Yamada Y, Nagatomi T, Takai Y, Fukuzumi S. Catalysis of Nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O8 2−. J Am Chem Soc. 2012;134:19572–5.CrossRefGoogle Scholar
  2. 2.
    Zhang G, Yu L, Wu HB, Hoster HE, Lou XWD. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater. 2012;24:4609–13.CrossRefGoogle Scholar
  3. 3.
    Hu W, Qin N, Wu G, Lin Y, Li S, Bao D. Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J Am Chem Soc. 2012;134:14658–61.CrossRefGoogle Scholar
  4. 4.
    Song Q, Zhang ZJ. Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture. J Am Chem Soc. 2012;134:10182–90.CrossRefGoogle Scholar
  5. 5.
    Xuan S, Wang YXJ, Yu JC, Leung CF. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem Mater. 2009;21:5079–87.CrossRefGoogle Scholar
  6. 6.
    Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed. 2005;117:2842–5.CrossRefGoogle Scholar
  7. 7.
    Sivagurunathan P, Gibin SR. Preparation and characterization of nickel ferrite nano particles by co-precipitation method with citrate as chelating agent. J Mater Sci-Mater Electron. 2016;27:2601–7.CrossRefGoogle Scholar
  8. 8.
    Cherian CT, Sundaramurthy J, Reddy MV, Suresh KP, Mani K, Pliszka D, Sow CH, Ramakrishna S, Chowdari BVR. Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. ACS Appl Mater Interfaces. 2013;5:9957–63.CrossRefGoogle Scholar
  9. 9.
    Chinnasamy CN, Narayanasamy A, Ponpandian N, Chattopadhyay K, Shinoda K, Jeyadevan B, Tohji K, Nakatsuka K, Furubayashi T, Nakatani I. Mixed spinel structure in nanocrystalline NiFe2O4. Phys Rev B. 2001;63:184108.CrossRefGoogle Scholar
  10. 10.
    Naseri MG, Saion EB, Ahangar HA, Hashim M, Shaari AH. Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method. J Magn Magn Mater. 2011;323:1745–9.CrossRefGoogle Scholar
  11. 11.
    Tiano AL, Papaefthymiou GC, Lewis CS, Han J, Zhang C, Li Q, Shi C, Abeykoon AMM, Billinge SJL, Stach E, Thomas J, Guerrero K, Munayco P, Munayco J, Scorzelli RB, Burnham P, Viescas AJ, Wong SS. Correlating size and composition-dependent effects with magnetic, mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles. Chem Mater. 2015;27:3572–92.CrossRefGoogle Scholar
  12. 12.
    Bateer B, Tian C, Qu Y, Du S, Yang Y, Ren Z, Pan K, Fu H. Synthesis, size and magnetic properties of controllable MnFe2O4 nanoparticles with versatile surface functionalities. Dalton Trans. 2014;43:9885–91.CrossRefGoogle Scholar
  13. 13.
    Zhao B, Hua B, Wang H, Nan Z. Modified magnetic properties of ZnLa0.02Fe1.98O4 clusters by anionic surfactant with solvothermal method. Mater Lett. 2013;92:75–7.CrossRefGoogle Scholar
  14. 14.
    Zhao B, Nan Z. Effects of CTAB on magnetic properties of ZnLa0.02 Fe1.98O4 crystals. J Alloy Compd. 2013;580:321–6.CrossRefGoogle Scholar
  15. 15.
    Quan L, Zhang H, Xu L. The non-isothermal cyclization kinetics of amino-functionalized carbon nanotubes/polyacrylonitrile composites by in situ polymerization. J Therm Anal Calorim. 2015;119:1081–9.CrossRefGoogle Scholar
  16. 16.
    Vasilakos SP, Tarantili PA. In situ monitoring by DSC and modeling of curing of vinyl polysiloxanes in layered silicate nanocomposites. J Therm Anal Calorim. 2017;127:2049–58.CrossRefGoogle Scholar
  17. 17.
    Wang L, Ma Z, Liu S, Huang Z. In situ growth mechanism and the thermodynamic functions of zinc oxide nano-arrays and hierarchical structure. J Therm Anal Calorim. 2014;115:201–8.CrossRefGoogle Scholar
  18. 18.
    Zhu J, Nan Z. Zn-Doped Fe3O4 nanosheet formation induced by EDA with high magnetization and an investigation of the formation mechanism. J Phys Chem C. 2017;121:9612–20.CrossRefGoogle Scholar
  19. 19.
    Holzwarth U, Gibson N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat Nanotechnol. 2011;6:534.CrossRefGoogle Scholar
  20. 20.
    Shen P, Zhang H, Zhang S, Yuan P, Yang Y, Zhang Q, Zhang X. Solvothermal synthesis of mesoporous magnetite nanoparticles for Cr(IV) ions uptake and microwave absorption. J Nanopart Res. 2016;18:129.CrossRefGoogle Scholar
  21. 21.
    de la Vega AE, Garza-Navarro MA, Durán-Guerrero JG, Cortez IEM, Lucio-Porto R, González-González V. Tailoring the magnetic properties of cobalt-ferrite nanoclusters. J Nanopart Res. 2016;18:18.CrossRefGoogle Scholar
  22. 22.
    Gabal MA, Kosa S, Almutairi TS. Cr-substitution effect on the structural and magnetic properties of nano-sized NiFe2O4 prepared via novel chitosan route. J Magn Magn Mater. 2014;356:37–41.CrossRefGoogle Scholar
  23. 23.
    Baykal A, Kasapoğlu N, Köseoğlu Y, Toprak MS, Bayrakdar H. CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. J Alloy Compd. 2008;464:514–8.CrossRefGoogle Scholar
  24. 24.
    Yadav RS, Kuritka I, Vilcakova J, Havlica J, Masilko J, Kalina L, Tkacz J, Enev J, Hajdúchová M. Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. J Phys Chem Solids. 2017;107:150–61.CrossRefGoogle Scholar
  25. 25.
    Angadi VJ, Choudhury L, Sadhana K, Liu HL, Sandhya R, Matteppanavar S, Rudraswamy B, Pattar V, Anavekar RV, Praveena K. Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn ferrite nanoparticles. J Magn Magn Mater. 2017;424:1–11.CrossRefGoogle Scholar
  26. 26.
    Srinivasan TT, Srivastav CM, Venkataramani N, Patani MJ. Infrared absorption in spinel ferrites. Bull Mater Sci. 1984;6:1063–9.CrossRefGoogle Scholar
  27. 27.
    Jaffari GH, Rumaiz AK, Woicik JC, Shah SI. Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. J Appl Phys. 2012;111:093906.CrossRefGoogle Scholar
  28. 28.
    Baruwati B, Reddy KM, Manorama SV, Singh RK, Parkash O. Tailored conductivity behavior in nanocrystalline nickel ferrite. Appl Phys Lett. 2004;85:2833–5.CrossRefGoogle Scholar
  29. 29.
    Wühn M, Joseph Y, Bagus PS, Niklewski A, Püttner R, Reiss S, Weiss W, Martins M, Kaindl G, Wöll C. The electronic structure and orientation of styrene adsorbed on FeO(111) and Fe3O4(111) a spectroscopic investigation. J Phys Chem B. 2000;104:7694–701.CrossRefGoogle Scholar
  30. 30.
    Fujii T, Groot FMF, Sawatzky GA, Voogt FC, Hibma T, Okada K. In situ XPS analysis of various iron oxide films grown by NO2 -assisted molecular-beam epitaxy. Phys Rev B. 1999;59:3195.CrossRefGoogle Scholar
  31. 31.
    Liu J, Zhang Y, Nan Z. Facile synthesis of stoichiometric zinc ferrite nanocrystal clusters with superparamagnetism and high magnetization. Mater Res Bull. 2014;60:270–8.CrossRefGoogle Scholar
  32. 32.
    Jacobs JP, Maltha A, Reintjes JG, Drimal J, Ponec V, Brongersma HH. The surface of catalytically active spinels. J Catal. 1994;147:294–300.CrossRefGoogle Scholar
  33. 33.
    Feng S, Yang W, Wang Z. Synthesis of porous NiFe2O4 microparticles and its catalytic properties for methane combustion. Mater Sci Eng. B-Solid. 2011;176:1509–12.CrossRefGoogle Scholar
  34. 34.
    Mittal VK, Chandramohan P, Bera S, Srinivasan MP, Velmurugan S, Narasimhan SV. Cation distribution in NixMg1−xFe2O4 studied by XPS and Mössbauer spectroscopy. Solid State Commun. 2006;137:6–10.CrossRefGoogle Scholar
  35. 35.
    Carley AF, Rassias S, Roberts MW. The specificity of surface oxygen in the activation of adsorbed water at metal surfaces. Surf Sci. 1983;135:35–51.CrossRefGoogle Scholar
  36. 36.
    Sharma V, Chotia C, Tarachand T, Ganesan V, Okram GS. Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles. Phys Chem Chem Phys. 2017;19:14096–106.CrossRefGoogle Scholar
  37. 37.
    Chen L, Dai H, Shen Y, Bai J. Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route. J Alloy Compd. 2010;491:L33–8.CrossRefGoogle Scholar
  38. 38.
    Liu J, Bin Y, Matsuo M. Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size. J Phys Chem C. 2012;116:134–43.CrossRefGoogle Scholar
  39. 39.
    Willard MA, Nakamura Y, Laughlin DE, McHenry ME. Magnetic properties of ordered and disordered spinel-phase ferrimagnets. J Am Ceram Soc. 2010;82:3342–6.CrossRefGoogle Scholar
  40. 40.
    Nawale AB, Kanhe NS, Patil KR, Bhoraskar SV, Mathe VL, Das AK. Magnetic properties of thermal plasma synthesized nanocrystalline nickel ferrite (NiFe2O4). J Alloy Compd. 2011;509:4404–13.CrossRefGoogle Scholar
  41. 41.
    Jun YW, Lee JH, Cheon J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed. 2008;47:5122–35.CrossRefGoogle Scholar
  42. 42.
    Tanaka K, Narita A, Kitamura N, Uchiyama W, Morita M, Inubushi T, Chujo Y. Preparation for highly sensitive MRI contrast agents using core/shell type nanoparticles consisting of multiple SPIO cores with thin silica coating. Langmuir. 2010;26:11759–62.CrossRefGoogle Scholar
  43. 43.
    Liu J, Nan Z, Gao S. In situ microcalorimetry study of ZnFe2O4 nanoparticle formation under solvothermal conditions. Dalton Trans. 2015;44:17293–301.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouPeople’s Republic of China

Personalised recommendations